Suppr超能文献

标准化因果推断在观察性研究中的应用:使用 R 软件进行分析的分步教程。

Application of Standardization for Causal Inference in Observational Studies: A Step-by-step Tutorial for Analysis Using R Software.

机构信息

Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Korea.

出版信息

J Prev Med Public Health. 2022 Mar;55(2):116-124. doi: 10.3961/jpmph.21.569. Epub 2022 Feb 11.

Abstract

Epidemiological studies typically examine the causal effect of exposure on a health outcome. Standardization is one of the most straightforward methods for estimating causal estimands. However, compared to inverse probability weighting, there is a lack of user-centric explanations for implementing standardization to estimate causal estimands. This paper explains the standardization method using basic R functions only and how it is linked to the R package stdReg, which can be used to implement the same procedure. We provide a step-by-step tutorial for estimating causal risk differences, causal risk ratios, and causal odds ratios based on standardization. We also discuss how to carry out subgroup analysis in detail.

摘要

流行病学研究通常研究暴露对健康结果的因果效应。标准化是估计因果效应量的最直接方法之一。然而,与逆概率加权相比,对于实施标准化来估计因果效应量,缺乏以用户为中心的解释。本文仅使用基本的 R 函数解释标准化方法,以及它与 R 包 stdReg 的联系,stdReg 可用于执行相同的过程。我们提供了一个基于标准化的因果风险差异、因果风险比和因果优势比的分步教程。我们还详细讨论了如何进行亚组分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2285/8995931/f0371af84acd/jpmph-21-569f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验