Suppr超能文献

神经外科研究中观察性数据的因果推断:一篇小型综述与教程

Causal inference from observational data in neurosurgical studies: a mini-review and tutorial.

作者信息

Liu Mingxuan, Wang Xinru, Lee Jin Wee, Chakraborty Bibhas, Liu Nan, Volovici Victor

机构信息

Center for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore.

Duke-NUS Medical School, Programme in Health Services and Systems Research, Singapore, Singapore.

出版信息

Acta Neurochir (Wien). 2025 Feb 12;167(1):40. doi: 10.1007/s00701-025-06450-6.

Abstract

BACKGROUND

Establishing a causation relationship between treatments and patient outcomes is of essential importance for researchers to guide clinical decision-making with rigorous scientific evidence. Despite the fact that randomized controlled trials are widely regarded as the gold standard for identifying causal relationships, they are not without its generalizability and ethical constraints. Observational studies employing causal inference methods have emerged as a valuable alternative to exploring causal relationships.

METHODS

In this tutorial, we provide a succinct yet insightful guide about identifying causal relationships using observational studies, with a specific emphasis on research in the field of neurosurgery.

RESULTS

We first emphasize the importance of clearly defining causal questions and conceptualizing target trial emulation. The limitations of the classic causation framework proposed by Bradford Hill are then discussed. Following this, we introduce one of the modern frameworks of causal inference, which centers around the potential outcome framework and directed acyclic graphs. We present the obstacles presented by confounding and selection bias when attempting to establish causal relationships with observational data within this framework.

CONCLUSION

To provide a comprehensive overview, we present a summary of efficient causal inference methods that can address these challenges, along with a simulation example to illustrate these techniques.

摘要

背景

对于研究人员而言,利用严谨的科学证据来指导临床决策,确定治疗方法与患者预后之间的因果关系至关重要。尽管随机对照试验被广泛视为确定因果关系的金标准,但它也存在普遍性和伦理限制。采用因果推断方法的观察性研究已成为探索因果关系的一种有价值的替代方法。

方法

在本教程中,我们提供了一份简洁而深刻的指南,介绍如何使用观察性研究来确定因果关系,特别强调神经外科领域的研究。

结果

我们首先强调明确界定因果问题以及将目标试验模拟概念化的重要性。接着讨论了布拉德福德·希尔提出的经典因果框架的局限性。在此之后,我们介绍了因果推断的一种现代框架,该框架围绕潜在结果框架和有向无环图展开。我们阐述了在此框架内尝试利用观察性数据建立因果关系时,混杂因素和选择偏倚所带来的障碍。

结论

为了提供全面的概述,我们总结了能够应对这些挑战的有效因果推断方法,并给出一个模拟示例来说明这些技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed65/11813971/a2b6316657e9/701_2025_6450_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验