Suppr超能文献

无监督多组学数据整合方法:全面综述

Unsupervised Multi-Omics Data Integration Methods: A Comprehensive Review.

作者信息

Vahabi Nasim, Michailidis George

机构信息

Informatics Institute, University of Florida, Gainesville, FL, United States.

出版信息

Front Genet. 2022 Mar 22;13:854752. doi: 10.3389/fgene.2022.854752. eCollection 2022.

Abstract

Through the developments of Omics technologies and dissemination of large-scale datasets, such as those from The Cancer Genome Atlas, Alzheimer's Disease Neuroimaging Initiative, and Genotype-Tissue Expression, it is becoming increasingly possible to study complex biological processes and disease mechanisms more holistically. However, to obtain a comprehensive view of these complex systems, it is crucial to integrate data across various Omics modalities, and also leverage external knowledge available in biological databases. This review aims to provide an overview of multi-Omics data integration methods with different statistical approaches, focusing on tasks, including disease onset prediction, biomarker discovery, disease subtyping, module discovery, and network/pathway analysis. We also briefly review feature selection methods, multi-Omics data sets, and resources/tools that constitute critical components for carrying out the integration.

摘要

随着组学技术的发展以及大规模数据集的传播,如来自癌症基因组图谱、阿尔茨海默病神经影像倡议和基因型-组织表达等数据集,越来越有可能更全面地研究复杂的生物过程和疾病机制。然而,要全面了解这些复杂系统,整合各种组学模态的数据以及利用生物数据库中的外部知识至关重要。本综述旨在概述采用不同统计方法的多组学数据整合方法,重点关注疾病发病预测、生物标志物发现、疾病亚型划分、模块发现以及网络/通路分析等任务。我们还简要回顾了构成进行整合关键要素的特征选择方法、多组学数据集以及资源/工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c09/8981526/1519e29d5a6e/fgene-13-854752-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验