文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

无监督多组学数据整合方法:全面综述

Unsupervised Multi-Omics Data Integration Methods: A Comprehensive Review.

作者信息

Vahabi Nasim, Michailidis George

机构信息

Informatics Institute, University of Florida, Gainesville, FL, United States.

出版信息

Front Genet. 2022 Mar 22;13:854752. doi: 10.3389/fgene.2022.854752. eCollection 2022.


DOI:10.3389/fgene.2022.854752
PMID:35391796
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8981526/
Abstract

Through the developments of Omics technologies and dissemination of large-scale datasets, such as those from The Cancer Genome Atlas, Alzheimer's Disease Neuroimaging Initiative, and Genotype-Tissue Expression, it is becoming increasingly possible to study complex biological processes and disease mechanisms more holistically. However, to obtain a comprehensive view of these complex systems, it is crucial to integrate data across various Omics modalities, and also leverage external knowledge available in biological databases. This review aims to provide an overview of multi-Omics data integration methods with different statistical approaches, focusing on tasks, including disease onset prediction, biomarker discovery, disease subtyping, module discovery, and network/pathway analysis. We also briefly review feature selection methods, multi-Omics data sets, and resources/tools that constitute critical components for carrying out the integration.

摘要

随着组学技术的发展以及大规模数据集的传播,如来自癌症基因组图谱、阿尔茨海默病神经影像倡议和基因型-组织表达等数据集,越来越有可能更全面地研究复杂的生物过程和疾病机制。然而,要全面了解这些复杂系统,整合各种组学模态的数据以及利用生物数据库中的外部知识至关重要。本综述旨在概述采用不同统计方法的多组学数据整合方法,重点关注疾病发病预测、生物标志物发现、疾病亚型划分、模块发现以及网络/通路分析等任务。我们还简要回顾了构成进行整合关键要素的特征选择方法、多组学数据集以及资源/工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c09/8981526/e88d08e0936f/fgene-13-854752-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c09/8981526/1519e29d5a6e/fgene-13-854752-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c09/8981526/e88d08e0936f/fgene-13-854752-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c09/8981526/1519e29d5a6e/fgene-13-854752-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c09/8981526/e88d08e0936f/fgene-13-854752-g002.jpg

相似文献

[1]
Unsupervised Multi-Omics Data Integration Methods: A Comprehensive Review.

Front Genet. 2022-3-22

[2]
Integrative multi-omics and systems bioinformatics in translational neuroscience: A data mining perspective.

J Pharm Anal. 2023-8

[3]
Integration of Online Omics-Data Resources for Cancer Research.

Front Genet. 2020-10-23

[4]
Knowledge-guided learning methods for integrative analysis of multi-omics data.

Comput Struct Biotechnol J. 2024-4-30

[5]
Integrative clustering methods for multi-omics data.

Wiley Interdiscip Rev Comput Stat. 2022

[6]
Clustering and variable selection evaluation of 13 unsupervised methods for multi-omics data integration.

Brief Bioinform. 2020-12-1

[7]
Subtype-WESLR: identifying cancer subtype with weighted ensemble sparse latent representation of multi-view data.

Brief Bioinform. 2022-1-17

[8]
Integrated Multi-Omics Analyses in Oncology: A Review of Machine Learning Methods and Tools.

Front Oncol. 2020-6-30

[9]
Unsupervised neural network for single cell Multi-omics INTegration (UMINT): an application to health and disease.

Front Mol Biosci. 2023-5-24

[10]
Multi-omics Data Integration, Interpretation, and Its Application.

Bioinform Biol Insights. 2020-1-31

引用本文的文献

[1]
Clinical deep phenotyping of treatment response in schizophrenia (CDP-STAR): design and methodology of a prospective multimodal observational study.

Eur Arch Psychiatry Clin Neurosci. 2025-9-8

[2]
A technical review of multi-omics data integration methods: from classical statistical to deep generative approaches.

Brief Bioinform. 2025-7-2

[3]
Integration of multi-modal measurements identifies critical mechanisms of tuberculosis drug action.

Cell Syst. 2025-8-20

[4]
Chemotaxonomy, an Efficient Tool for Medicinal Plant Identification: Current Trends and Limitations.

Plants (Basel). 2025-7-19

[5]
Harnessing Multi-Omics and Predictive Modeling for Climate-Resilient Crop Breeding: From Genomes to Fields.

Genes (Basel). 2025-7-10

[6]
A systematic benchmark of integrative strategies for microbiome-metabolome data.

Commun Biol. 2025-7-25

[7]
Gene regulatory network integration with multi-omics data enhances survival predictions in cancer.

Brief Bioinform. 2025-7-2

[8]
GAUDI: interpretable multi-omics integration with UMAP embeddings and density-based clustering.

Nat Commun. 2025-7-1

[9]
Integrating multi-omics and machine learning for disease resistance prediction in legumes.

Theor Appl Genet. 2025-6-27

[10]
Advancing precision oncology with AI-powered genomic analysis.

Front Pharmacol. 2025-4-30

本文引用的文献

[1]
Matrix factorization for biomedical link prediction and scRNA-seq data imputation: an empirical survey.

Brief Bioinform. 2022-1-17

[2]
Identifying driver genes for individual patients through inductive matrix completion.

Bioinformatics. 2021-12-7

[3]
Multi-dimensional data integration algorithm based on random walk with restart.

BMC Bioinformatics. 2021-2-27

[4]
Subtype-GAN: a deep learning approach for integrative cancer subtyping of multi-omics data.

Bioinformatics. 2021-8-25

[5]
Prediction of RNA-binding protein and alternative splicing event associations during epithelial-mesenchymal transition based on inductive matrix completion.

Brief Bioinform. 2021-9-2

[6]
Multi-Omics Analysis Reveals Novel Subtypes and Driver Genes in Glioblastoma.

Front Genet. 2020-11-26

[7]
A Review of Integrative Imputation for Multi-Omics Datasets.

Front Genet. 2020-10-15

[8]
A network embedding based method for partial multi-omics integration in cancer subtyping.

Methods. 2021-8

[9]
Analysis of Ugandan cervical carcinomas identifies human papillomavirus clade-specific epigenome and transcriptome landscapes.

Nat Genet. 2020-8-3

[10]
PAMOGK: a pathway graph kernel-based multiomics approach for patient clustering.

Bioinformatics. 2021-1-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索