整合多组学和机器学习用于豆类抗病性预测
Integrating multi-omics and machine learning for disease resistance prediction in legumes.
作者信息
Mohamedikbal Shameela, Al-Mamun Hawlader A, Bestry Mitchell S, Batley Jacqueline, Edwards David
机构信息
Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, 6009, Australia.
School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia.
出版信息
Theor Appl Genet. 2025 Jun 27;138(7):163. doi: 10.1007/s00122-025-04948-2.
Multi-omics assisted prediction of disease resistance mechanisms using machine learning has the potential to accelerate the breeding of resistant legume varieties. Grain legumes, such as soybean (Glycine max (L.) Merr.), chickpea (Cicer arietinum L.), and lentil (Lens culinaris Medik.) play an important role in combating micronutrient malnutrition in the growing human population. However, plant diseases significantly reduce grain yield, causing 10-40% losses in major food crops. The genetic mechanisms associated with disease resistance in legumes have been widely studied using genomic approaches. Multi-omics data encompassing various biological layers such as the transcriptome, epigenome, proteome, and metabolome, in addition to the genome, enables researchers to gain a deeper understanding of these complementary layers and their roles in complex legume-pathogen interactions. Genomic prediction, used to select the best genotypes with desirable traits for breeding, has largely relied on genome-wide markers and statistical approaches to estimate the breeding values of individuals. Integrating multi-omics data into genomic prediction can be achieved using machine learning models, which can capture nonlinear relationships prevalent in high-dimensional data better than traditional statistical methods. This integration may enable more accurate predictions and identification of resistance mechanisms for breeding resistant legumes. Despite its potential, multi-omics integration for disease resistance prediction in legumes has been largely unexplored. In this review, we explore omics studies focusing on disease resistance in legumes and discuss how machine learning models can integrate multi-omics data for disease resistance prediction. Such multi-omics assisted prediction has the potential to reduce the breeding cycle for developing disease-resistant legume varieties.
利用机器学习进行多组学辅助的抗病机制预测,有潜力加速抗性豆类品种的培育。食用豆类,如大豆(Glycine max (L.) Merr.)、鹰嘴豆(Cicer arietinum L.)和小扁豆(Lens culinaris Medik.),在应对不断增长的人口中的微量营养素营养不良方面发挥着重要作用。然而,植物病害会显著降低谷物产量,导致主要粮食作物损失10%-40%。利用基因组方法,已对豆类抗病相关的遗传机制进行了广泛研究。除基因组外,包含转录组、表观基因组、蛋白质组和代谢组等各种生物层面的多组学数据,使研究人员能够更深入地了解这些互补层面及其在复杂的豆类-病原体相互作用中的作用。用于选择具有理想性状的最佳基因型进行育种的基因组预测,在很大程度上依赖于全基因组标记和统计方法来估计个体的育种值。使用机器学习模型可以将多组学数据整合到基因组预测中,与传统统计方法相比,机器学习模型能够更好地捕捉高维数据中普遍存在的非线性关系。这种整合可能会实现更准确的预测,并识别出培育抗性豆类的抗病机制。尽管具有潜力,但多组学整合在豆类抗病性预测方面的应用在很大程度上尚未得到探索。在本综述中,我们探讨了专注于豆类抗病性的组学研究,并讨论了机器学习模型如何整合多组学数据进行抗病性预测。这种多组学辅助预测有潜力缩短培育抗病豆类品种的育种周期。