University Medical Center Utrecht, Utrecht, the Netherlands.
Babylon Health, London, UK.
Sci Rep. 2022 Apr 7;12(1):5848. doi: 10.1038/s41598-022-09775-9.
Randomized Controlled Trials (RCT) are the gold standard for estimating treatment effects but some important situations in cancer care require treatment effect estimates from observational data. We developed "Proxy based individual treatment effect modeling in cancer" (PROTECT) to estimate treatment effects from observational data when there are unobserved confounders, but proxy measurements of these confounders exist. We identified an unobserved confounder in observational cancer research: overall fitness. Proxy measurements of overall fitness exist like performance score, but the fitness as observed by the treating physician is unavailable for research. PROTECT reconstructs the distribution of the unobserved confounder based on these proxy measurements to estimate the treatment effect. PROTECT was applied to an observational cohort of 504 stage III non-small cell lung cancer (NSCLC) patients, treated with concurrent chemoradiation or sequential chemoradiation. Whereas conventional confounding adjustment methods seemed to overestimate the treatment effect, PROTECT provided credible treatment effect estimates.
随机对照试验(RCT)是估计治疗效果的金标准,但癌症治疗中的一些重要情况需要从观察性数据中估计治疗效果。我们开发了“基于代理的癌症个体治疗效果建模”(PROTECT),当存在未观察到的混杂因素,但存在这些混杂因素的代理测量时,从观察性数据中估计治疗效果。我们在观察性癌症研究中确定了一个未观察到的混杂因素:整体健康状况。整体健康状况的代理测量存在,如表现评分,但治疗医生观察到的健康状况无法用于研究。PROTECT 根据这些代理测量结果重建未观察到的混杂因素的分布,以估计治疗效果。PROTECT 应用于一个 504 名 III 期非小细胞肺癌(NSCLC)患者的观察性队列,这些患者接受同步放化疗或序贯放化疗。虽然传统的混杂调整方法似乎高估了治疗效果,但 PROTECT 提供了可信的治疗效果估计。