Suppr超能文献

从算法到行动:提高患者护理质量需要因果关系。

From algorithms to action: improving patient care requires causality.

机构信息

Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands.

Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands.

出版信息

BMC Med Inform Decis Mak. 2024 Apr 26;24(1):111. doi: 10.1186/s12911-024-02513-3.

Abstract

In cancer research there is much interest in building and validating outcome prediction models to support treatment decisions. However, because most outcome prediction models are developed and validated without regard to the causal aspects of treatment decision making, many published outcome prediction models may cause harm when used for decision making, despite being found accurate in validation studies. Guidelines on prediction model validation and the checklist for risk model endorsement by the American Joint Committee on Cancer do not protect against prediction models that are accurate during development and validation but harmful when used for decision making. We explain why this is the case and how to build and validate models that are useful for decision making.

摘要

在癌症研究中,人们非常关注构建和验证预后预测模型,以支持治疗决策。然而,由于大多数预后预测模型的开发和验证都没有考虑到治疗决策的因果方面,因此,尽管在验证研究中发现是准确的,但许多已发表的预后预测模型在用于决策时可能会造成伤害。美国癌症联合委员会的预后模型验证指南和风险模型推荐清单并不能防止那些在开发和验证过程中准确但在用于决策时有害的预测模型。我们解释了为什么会这样,以及如何构建和验证对决策有用的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6924/11046962/fbd106578eca/12911_2024_2513_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验