Pivoluska Matej, Plesch Martin
Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04, Bratislava, Slovak Republic.
Institute of Computer Science, Masaryk University, Šumavská 416, 602 00, Brno, Czech Republic.
Sci Rep. 2022 Apr 7;12(1):5841. doi: 10.1038/s41598-022-09881-8.
Advances in development of quantum computing processors brought ample opportunities to test the performance of various quantum algorithms with practical implementations. In this paper we report on implementations of quantum compression algorithm that can efficiently compress unknown quantum information. We restricted ourselves to compression of three pure qubits into two qubits, as the complexity of even such a simple implementation is barely within the reach of today's quantum processors. We implemented the algorithm on IBM quantum processors with two different topological layouts-a fully connected triangle processor and a partially connected line processor. It turns out that the incomplete connectivity of the line processor affects the performance only minimally. On the other hand, it turns out that the transpilation, i.e. compilation of the circuit into gates physically available to the quantum processor, crucially influences the result. We also have seen that the compression followed by immediate decompression is, even for such a simple case, on the edge or even beyond the capabilities of currently available quantum processors.
量子计算处理器的发展进步为通过实际应用来测试各种量子算法的性能带来了充足的机会。在本文中,我们报告了一种能够有效压缩未知量子信息的量子压缩算法的实现情况。我们将自己的研究局限于把三个纯量子比特压缩为两个量子比特,因为即便如此简单的一个实现,其复杂度也几乎超出了当今量子处理器的能力范围。我们在具有两种不同拓扑布局的IBM量子处理器上实现了该算法,一种是全连接三角形处理器,另一种是部分连接的线性处理器。结果表明,线性处理器的不完全连接性对性能的影响微乎其微。另一方面,事实证明,将电路转换为量子处理器实际可用的门的转译过程,即编译过程,对结果有着至关重要的影响。我们还发现,即使对于这样一个简单的情况,先进行压缩然后立即解压缩,也已接近甚至超出了当前可用量子处理器的能力范围。