Hu Lihua, Shi Jialing, Peng Zhiguang, Zheng Zefeng, Dong Huafeng, Wang Tiejun
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
Nanoscale. 2022 Apr 21;14(16):6202-6211. doi: 10.1039/d2nr00053a.
The development of novel non-noble electrocatalysts is critical for an efficient electrochemical hydrogen evolution reaction (HER). In this study, high-density nickel-cobalt alloy nanoparticles embedded in the bent nitrogen-doped carbon nanosheets are prepared as a high-performance catalyst. The optimized NiCo/NC-500 catalyst displays quite a low overpotential of 90 mV at a current density of 10 mA cm, and a small Tafel slope of 64 mV dec in alkaline medium, and even performs better than commercial 20% Pt/C at a high current density ( = 233 mV for NiCo/NC-500 and = 267 mV for 20% Pt/C). Specifically, the high-density nickel-cobalt alloy (with an average size of 6.2 nm and a distance of <3.0 nm) embedded in the bent carbon nanosheets provides plentiful active sites. Furthermore, visualization of the produced hydrogen bubbles shows that the small size of hydrogen bubbles ( = 0.2 mm for NiCo/NC-500 = 0.8 mm for 20% Pt/C) resulting from the small water contact angle and the bent nanosheet structure would inhibit the aggregation of H bubbles on the surface to facilitate efficient mass diffusion. Density functional theory calculations reveal that the formation of the nickel-cobalt alloy can effectively lower water dissociation energy barriers and optimize hydrogen adsorption Gibbs free energy, manifesting a high HER activity.
开发新型非贵金属电催化剂对于高效的电化学析氢反应(HER)至关重要。在本研究中,制备了嵌入弯曲氮掺杂碳纳米片中的高密度镍钴合金纳米颗粒作为高性能催化剂。优化后的NiCo/NC-500催化剂在10 mA cm的电流密度下显示出相当低的过电位,为90 mV,在碱性介质中的塔菲尔斜率为64 mV dec,甚至在高电流密度下(NiCo/NC-500为233 mV,20% Pt/C为267 mV)表现优于商业20% Pt/C。具体而言,嵌入弯曲碳纳米片中的高密度镍钴合金(平均尺寸为6.2 nm,间距<3.0 nm)提供了丰富的活性位点。此外,所产生氢气泡的可视化显示,由于小的水接触角和弯曲的纳米片结构导致的小尺寸氢气泡(NiCo/NC-500为0.2 mm,20% Pt/C为0.8 mm)将抑制H气泡在表面的聚集,以促进有效的质量扩散。密度泛函理论计算表明,镍钴合金的形成可以有效地降低水离解能垒并优化氢吸附吉布斯自由能,表现出高的析氢反应活性。