Fujiwara Takanori, Sakamoto Naohisa, Nonaka Jorji, Ma Kwan-Liu
IEEE Trans Vis Comput Graph. 2022 Jun;28(6):2338-2349. doi: 10.1109/TVCG.2022.3165348. Epub 2022 May 2.
Many real-world applications involve analyzing time-dependent phenomena, which are intrinsically functional, consisting of curves varying over a continuum (e.g., time). When analyzing continuous data, functional data analysis (FDA) provides substantial benefits, such as the ability to study the derivatives and to restrict the ordering of data. However, continuous data inherently has infinite dimensions, and for a long time series, FDA methods often suffer from high computational costs. The analysis problem becomes even more challenging when updating the FDA results for continuously arriving data. In this paper, we present a visual analytics approach for monitoring and reviewing time series data streamed from a hardware system with a focus on identifying outliers by using FDA. To perform FDA while addressing the computational problem, we introduce new incremental and progressive algorithms that promptly generate the magnitude-shape (MS) plot, which conveys both the functional magnitude and shape outlyingness of time series data. In addition, by using an MS plot in conjunction with an FDA version of principal component analysis, we enhance the analyst's ability to investigate the visually-identified outliers. We illustrate the effectiveness of our approach with two use scenarios using real-world datasets. The resulting tool is evaluated by industry experts using real-world streaming datasets.
许多实际应用都涉及对随时间变化的现象进行分析,这些现象本质上是函数性的,由在连续统(如时间)上变化的曲线组成。在分析连续数据时,函数数据分析(FDA)具有显著优势,比如能够研究导数并限制数据的排序。然而,连续数据本身具有无限维度,对于长时间序列,FDA方法往往计算成本高昂。当为持续到达的数据更新FDA结果时,分析问题变得更具挑战性。在本文中,我们提出一种可视化分析方法,用于监测和审查从硬件系统流式传输的时间序列数据,重点是使用FDA识别异常值。为了在解决计算问题的同时执行FDA,我们引入了新的增量式和渐进式算法,这些算法能迅速生成幅度-形状(MS)图,该图传达了时间序列数据的函数幅度和形状异常性。此外,通过将MS图与FDA版本的主成分分析相结合,我们提高了分析师调查视觉识别出的异常值的能力。我们使用真实世界数据集的两个使用场景说明了我们方法的有效性。所得工具由行业专家使用真实世界的流式数据集进行评估。