Suppr超能文献

基于流的海伯自生特征滤波器用于实时神经元尖峰甄别。

Stream-based Hebbian eigenfilter for real-time neuronal spike discrimination.

机构信息

Tsinghua National Laboratory for Information Science and Technology, Institute of Microelectronics, Tsinghua University, Beijing 100084, China.

出版信息

Biomed Eng Online. 2012 Apr 10;11:18. doi: 10.1186/1475-925X-11-18.

Abstract

BACKGROUND

Principal component analysis (PCA) has been widely employed for automatic neuronal spike sorting. Calculating principal components (PCs) is computationally expensive, and requires complex numerical operations and large memory resources. Substantial hardware resources are therefore needed for hardware implementations of PCA. General Hebbian algorithm (GHA) has been proposed for calculating PCs of neuronal spikes in our previous work, which eliminates the needs of computationally expensive covariance analysis and eigenvalue decomposition in conventional PCA algorithms. However, large memory resources are still inherently required for storing a large volume of aligned spikes for training PCs. The large size memory will consume large hardware resources and contribute significant power dissipation, which make GHA difficult to be implemented in portable or implantable multi-channel recording micro-systems.

METHOD

In this paper, we present a new algorithm for PCA-based spike sorting based on GHA, namely stream-based Hebbian eigenfilter, which eliminates the inherent memory requirements of GHA while keeping the accuracy of spike sorting by utilizing the pseudo-stationarity of neuronal spikes. Because of the reduction of large hardware storage requirements, the proposed algorithm can lead to ultra-low hardware resources and power consumption of hardware implementations, which is critical for the future multi-channel micro-systems. Both clinical and synthetic neural recording data sets were employed for evaluating the accuracy of the stream-based Hebbian eigenfilter. The performance of spike sorting using stream-based eigenfilter and the computational complexity of the eigenfilter were rigorously evaluated and compared with conventional PCA algorithms. Field programmable logic arrays (FPGAs) were employed to implement the proposed algorithm, evaluate the hardware implementations and demonstrate the reduction in both power consumption and hardware memories achieved by the streaming computing

RESULTS AND DISCUSSION

Results demonstrate that the stream-based eigenfilter can achieve the same accuracy and is 10 times more computationally efficient when compared with conventional PCA algorithms. Hardware evaluations show that 90.3% logic resources, 95.1% power consumption and 86.8% computing latency can be reduced by the stream-based eigenfilter when compared with PCA hardware. By utilizing the streaming method, 92% memory resources and 67% power consumption can be saved when compared with the direct implementation of GHA.

CONCLUSION

Stream-based Hebbian eigenfilter presents a novel approach to enable real-time spike sorting with reduced computational complexity and hardware costs. This new design can be further utilized for multi-channel neuro-physiological experiments or chronic implants.

摘要

背景

主成分分析(PCA)已广泛应用于自动神经元尖峰分类。计算主成分(PC)计算成本高,需要复杂的数值运算和大量的内存资源。因此,硬件实现 PCA 需要大量的硬件资源。在我们之前的工作中,已经提出了通用海伯算法(GHA)来计算神经元尖峰的 PC,该算法消除了传统 PCA 算法中计算成本高的协方差分析和特征值分解的需要。然而,为了训练 PC,仍然需要大量的内存来存储大量对齐的尖峰。大容量内存将消耗大量的硬件资源并产生显著的功耗,这使得 GHA 难以在便携式或植入式多通道记录微系统中实现。

方法

在本文中,我们提出了一种基于 GHA 的 PCA 尖峰分类新算法,即基于流的海伯特征滤波器,该算法通过利用神经元尖峰的伪平稳性,消除了 GHA 的固有内存需求,同时保持了尖峰分类的准确性。由于减少了大容量硬件存储需求,该算法可以显著降低硬件实现的硬件资源和功耗,这对于未来的多通道微系统至关重要。我们使用临床和合成神经记录数据集来评估基于流的海伯特征滤波器的准确性。我们严格评估了基于流的特征滤波器的尖峰分类性能和特征滤波器的计算复杂度,并与传统 PCA 算法进行了比较。现场可编程逻辑阵列(FPGA)被用来实现所提出的算法,评估硬件实现,并展示流计算带来的功率消耗和硬件存储的减少。

结果与讨论

结果表明,与传统 PCA 算法相比,基于流的特征滤波器可以达到相同的准确性,计算效率提高了 10 倍。硬件评估表明,与 PCA 硬件相比,基于流的特征滤波器可以减少 90.3%的逻辑资源、95.1%的功耗和 86.8%的计算延迟。通过利用流方法,与 GHA 的直接实现相比,可以节省 92%的内存资源和 67%的功耗。

结论

基于流的海伯特征滤波器为实时尖峰分类提供了一种新的方法,降低了计算复杂度和硬件成本。这种新设计可以进一步用于多通道神经生理学实验或慢性植入物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c193/3352240/1d0e6061dc39/1475-925X-11-18-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验