From the Institute for Social Research, University of Michigan, Ann Arbor, MI.
Community Hospital, Munster, IN.
Epidemiology. 2022 Jul 1;33(4):457-464. doi: 10.1097/EDE.0000000000001488. Epub 2022 Mar 29.
Explicit knowledge of total community-level immune seroprevalence is critical to developing policies to mitigate the social and clinical impact of SARS-CoV-2. Publicly available vaccination data are frequently cited as a proxy for population immunity, but this metric ignores the effects of naturally acquired immunity, which varies broadly throughout the country and world. Without broad or random sampling of the population, accurate measurement of persistent immunity post-natural infection is generally unavailable.
To enable tracking of both naturally acquired and vaccine-induced immunity, we set up a synthetic random proxy based on routine hospital testing for estimating total immunoglobulin G (IgG) prevalence in the sampled community. Our approach analyzed viral IgG testing data of asymptomatic patients who presented for elective procedures within a hospital system. We applied multilevel regression and poststratification to adjust for demographic and geographic discrepancies between the sample and the community population. We then applied state-based vaccination data to categorize immune status as driven by natural infection or by vaccine.
We validated the model using verified clinical metrics of viral and symptomatic disease incidence to show the expected biologic correlation of these entities with the timing, rate, and magnitude of seroprevalence. In mid-July 2021, the estimated immunity level was 74% with the administered vaccination rate of 45% in the two counties.
Our metric improves real-time understanding of immunity to COVID-19 as it evolves and the coordination of policy responses to the disease, toward an inexpensive and easily operational surveillance system that transcends the limits of vaccination datasets alone.
明确了解总社区层面的免疫血清流行率对于制定减轻 SARS-CoV-2 的社会和临床影响的政策至关重要。公开可用的疫苗接种数据经常被用作人群免疫的代理指标,但该指标忽略了自然获得性免疫的影响,而自然获得性免疫在全国和世界范围内差异很大。如果没有对人群进行广泛或随机抽样,就无法准确测量自然感染后的持续免疫力。
为了能够跟踪自然获得的和疫苗诱导的免疫,我们基于常规医院检测建立了一个综合随机代理,以估计采样社区中的总免疫球蛋白 G(IgG)流行率。我们的方法分析了在医院系统内接受择期手术的无症状患者的病毒 IgG 检测数据。我们应用了多层次回归和后分层来调整样本和社区人群之间的人口统计学和地理位置差异。然后,我们应用基于州的疫苗接种数据将免疫状态分类为自然感染或疫苗驱动。
我们使用病毒和症状疾病发生率的已验证临床指标验证了该模型,以显示这些实体与血清流行率的时间、速度和幅度的预期生物学相关性。在 2021 年 7 月中旬,在这两个县,估计的免疫水平为 74%,而接种疫苗的比例为 45%。
我们的指标提高了对 COVID-19 免疫的实时理解,因为它在不断发展,协调对该疾病的政策反应,朝着一种廉价且易于操作的监测系统发展,该系统超越了单独疫苗接种数据集的限制。