Leiden University Medical Center, Department of ENT, Leiden, The Netherlands.
Leiden University Medical Center, Department of ENT, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
Hear Res. 2022 Jul;420:108490. doi: 10.1016/j.heares.2022.108490. Epub 2022 Mar 25.
Spread of excitation (SOE) in cochlear implants (CI) is a measure linked to the specificity of the electrode-neuron interface. The SOE can be estimated objectively by electrically evoked compound action potential (eCAP) measurements, recorded with the forward-masking paradigm in CI recipients. The eCAP amplitude can be plotted as a function of the roving masker, resulting in a spatial forward masking (SFM) curve. The eCAP amplitudes presented in the SFM curves, however, reflect an interaction between a masker and probe stimulus, making the SFM curves less reliable for examining SOE effects at the level of individual electrode contacts. To counter this, our previously published deconvolution method estimates the SOE at the electrode level by deconvolving the SFM curves (Biesheuvel et al., 2016). The aim of this study was to investigate the effect of stimulus level on the SOE of individual electrode contacts by using SFM curves analyzed with our deconvolution method.
Following the deconvolution method, theoretical SFM curves were calculated by the convolution of parameterized excitation density profiles (EDP) attributable to masker and probe stimuli. These SFM curves were subsequently fitted to SFM curves from CI recipients by iteratively adjusting the EDPs. We first improved the EDP parameterization to account for stimulus-level effects and validated this updated parameterization by comparing the EDPs to simulated excitation density profiles (sEDP) from our computational model of the human cochlea. Secondly, we analyzed SFM curves recorded with varying probe stimulus level in 24 patients, all implanted with a HiFocus Mid-Scala electrode array. With the deconvolution method extended to account for stimulus level effects, the SFM curves measured with varying probe stimulus levels were converted into EDPs to elucidate the effects of stimulus level on the SOE.
The updated EDP parameterization was in good agreement with the sEDPs from the computational model. Using the extended deconvolution method, we found that higher stimulus levels caused significant widening of EDPs (p < 0.001). The stimulus level also affected the EDP amplitude (p < 0.001) and the center of excitation (p < 0.05). Concerning the raw SFM curves, an increase in current level led to higher SFM curve amplitudes (p < 0.001), while the width of the SFM curves did not change significantly (p = 0.62).
The extended deconvolution method enabled us to study the effect of stimulus level on excitation areas in an objective way, as the EDP parameterization was in good agreement with sEDPs from our computational model. The analysis of SFM curves provided new insights into the effect of the stimulus level on SOE. We found that the EDPs, and therefore the SOE, mainly became wider when the stimulus level increased. Lastly, the comparison of the EDP parameterization with simulations in our computation model provided new insights about the validity of the deconvolution method.
耳蜗植入物(CI)中的兴奋传播(SOE)是与电极-神经元界面特异性相关的测量指标。SOE 可以通过使用 CI 受者的前向掩蔽范式记录的电诱发复合动作电位(eCAP)测量来客观地估计。eCAP 幅度可以作为游动掩蔽器的函数绘制,从而产生空间前向掩蔽(SFM)曲线。然而,SFM 曲线上呈现的 eCAP 幅度反映了掩蔽器和探针刺激之间的相互作用,使得 SFM 曲线在检查单个电极接触处的 SOE 效应时不太可靠。为了解决这个问题,我们之前发表的解卷积方法通过对 SFM 曲线进行解卷积来估计电极水平的 SOE(Biesheuvel 等人,2016 年)。本研究的目的是通过使用我们的解卷积方法分析 SFM 曲线来研究刺激水平对单个电极接触的 SOE 的影响。
根据解卷积方法,通过卷积归因于掩蔽器和探针刺激的参数化激励密度分布(EDP)来计算理论 SFM 曲线。然后,通过迭代调整 EDP 来拟合 CI 受者的 SFM 曲线。我们首先改进了 EDP 参数化,以考虑刺激水平的影响,并通过将 EDP 与我们人类耳蜗计算模型的模拟激励密度分布(sEDP)进行比较来验证此更新的参数化。其次,我们在 24 名患者中分析了具有不同探针刺激水平的 SFM 曲线,所有患者均植入了 HiFocus Mid-Scala 电极阵列。通过扩展到考虑刺激水平影响的解卷积方法,我们将具有不同探针刺激水平测量的 SFM 曲线转换为 EDP,以阐明刺激水平对 SOE 的影响。
更新的 EDP 参数化与计算模型的 sEDP 非常吻合。使用扩展的解卷积方法,我们发现较高的刺激水平导致 EDP 显著变宽(p <0.001)。刺激水平还影响 EDP 幅度(p <0.001)和兴奋中心(p <0.05)。关于原始 SFM 曲线,电流水平的增加导致 SFM 曲线幅度更高(p <0.001),而 SFM 曲线的宽度没有明显变化(p=0.62)。
扩展的解卷积方法使我们能够以客观的方式研究刺激水平对兴奋区的影响,因为 EDP 参数化与我们计算模型的 sEDP 非常吻合。SFM 曲线的分析为刺激水平对 SOE 的影响提供了新的见解。我们发现,当刺激水平增加时,EDP 主要变宽,因此 SOE 变宽。最后,将 EDP 参数化与我们计算模型中的模拟进行比较,为解卷积方法的有效性提供了新的见解。