Hydro-Climate Extremes Lab (H-CEL), Ghent University, Ghent, Belgium.
CREAF, Catalonia, Spain.
Nat Commun. 2022 Apr 8;13(1):1912. doi: 10.1038/s41467-022-29543-7.
Terrestrial evaporation (E) is a key climatic variable that is controlled by a plethora of environmental factors. The constraints that modulate the evaporation from plant leaves (or transpiration, E) are particularly complex, yet are often assumed to interact linearly in global models due to our limited knowledge based on local studies. Here, we train deep learning algorithms using eddy covariance and sap flow data together with satellite observations, aiming to model transpiration stress (S), i.e., the reduction of E from its theoretical maximum. Then, we embed the new S formulation within a process-based model of E to yield a global hybrid E model. In this hybrid model, the S formulation is bidirectionally coupled to the host model at daily timescales. Comparisons against in situ data and satellite-based proxies demonstrate an enhanced ability to estimate S and E globally. The proposed framework may be extended to improve the estimation of E in Earth System Models and enhance our understanding of this crucial climatic variable.
陆地蒸发(E)是一个关键的气候变量,受大量环境因素的控制。调节植物叶片蒸发(或蒸腾,E)的限制因素非常复杂,但由于我们基于局部研究的有限知识,通常假设它们在全球模型中呈线性相互作用。在这里,我们使用涡度协方差和 sap 流数据以及卫星观测来训练深度学习算法,旨在模拟蒸腾胁迫(S),即从理论最大值减少 E。然后,我们将新的 S 公式嵌入到基于过程的 E 模型中,生成一个全球混合 E 模型。在这个混合模型中,S 公式在每日时间尺度上与主机模型双向耦合。与现场数据和基于卫星的代理进行比较表明,该模型在全球范围内估计 S 和 E 的能力得到了提高。该框架可以扩展以提高地球系统模型中 E 的估计,并增强我们对这一关键气候变量的理解。