Suppr超能文献

FLUXNET2015 数据集和涡度相关通量数据的 ONEFlux 处理管道。

The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data.

机构信息

Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.

DIBAF, University of Tuscia, Viterbo, 01100, Italy.

出版信息

Sci Data. 2020 Jul 9;7(1):225. doi: 10.1038/s41597-020-0534-3.

Abstract

The FLUXNET2015 dataset provides ecosystem-scale data on CO, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.

摘要

FLUXNET2015 数据集提供了全球 212 个站点(超过 1500 个站点年,截至 2014 年)的生物圈与大气之间 CO、水和能量交换以及其他气象和生物测量的生态系统尺度数据。这些站点由独立管理和运营,自愿提供数据以创建全球数据集。数据集使用统一的方法进行质量控制和处理,以提高站点之间的一致性和可比较性。该数据集已经在许多应用中得到了使用,包括生理生态学研究、遥感研究以及生态系统和地球系统模型的开发。FLUXNET2015 包含衍生数据产品,例如填补空白的时间序列、生态系统呼吸和光合作用吸收估算、不确定性估计以及有关测量的元数据,这些数据产品都是首次在本文中介绍。此外,其中 206 个站点首次以知识共享署名 4.0(CC-BY 4.0)许可证发布。本文详细介绍了这个增强型数据集和处理方法,现在提供了开源代码,使数据集更易于访问、透明和可重复使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da93/7347557/929462dec796/41597_2020_534_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验