Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095, USA; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095, USA; Department of Mechanical Engineering Rowan University, Rowan Hall 201 Mullica Hill Rd. Glassboro, NJ, 08028, USA.
J Mech Behav Biomed Mater. 2022 Jun;130:105156. doi: 10.1016/j.jmbbm.2022.105156. Epub 2022 Mar 18.
Metallic coil embolization is a common method for the endovascular treatment of visceral artery aneurysms (VAA) and visceral artery pseudoaneurysms (VAPA); however, this treatment is suboptimal due to the high cost of coils, incomplete volume occlusion, poor reendothelialization, aneurysm puncture, and coil migration. Several alternative treatment strategies are available, including stent flow diverters, glue embolics, gelfoam slurries, and vascular mesh plugs-each of which have their own disadvantages. Here, we investigated the in vitro capability of a shear-thinning biomaterial (STB), a nanocomposite hydrogel composed of gelatin and silicate nanoplatelets, for the minimally-invasive occlusion of simple necked aneurysm models. We demonstrated the injectability of STB through various clinical catheters, engineered an in vitro testing apparatus to independently manipulate aneurysm neck diameter, fluid flow rate, and flow waveform, and tested the stability of STB within the models under various conditions. Our experiments show that STB is able to withstand at least 1.89 Pa of wall shear stress, as estimated by computational fluid dynamics. STB is also able to withstand up to 10 mL s pulsatile flow with a waveform mimicking blood flow in the human femoral artery and tolerate greater pressure changes than those in the human aorta. We ultimately found that our in vitro system was limited by supraphysiologic pressure changes caused by aneurysm models with low compliance.
金属线圈栓塞是内脏动脉动脉瘤(VAA)和内脏动脉假性动脉瘤(VAPA)血管内治疗的常用方法;然而,由于线圈成本高、体积不完全闭塞、再内皮化不良、动脉瘤穿刺和线圈迁移等问题,这种治疗方法并不理想。有几种替代治疗策略,包括支架血流分流器、胶栓、明胶海绵浆和血管网塞-每种方法都有其自身的缺点。在这里,我们研究了一种剪切稀化生物材料(STB)的体外能力,STB 是一种由明胶和硅酸盐纳米片组成的纳米复合水凝胶,用于微创闭塞简单颈部动脉瘤模型。我们通过各种临床导管证明了 STB 的可注射性,设计了一种体外测试设备来独立地操纵动脉瘤颈部直径、流体流速和流型,并且在各种条件下测试了 STB 在模型中的稳定性。我们的实验表明,STB 能够承受至少 1.89 Pa 的壁面剪切应力,这是通过计算流体动力学估计的。STB 还能够承受高达 10 mL/s 的脉动流,其流型模拟了人体股动脉中的血流,并能耐受比人体主动脉更高的压力变化。我们最终发现,我们的体外系统受到由顺应性低的动脉瘤模型引起的超生理压力变化的限制。