Suppr超能文献

家庭社会经济地位分类方法比较及对风险估计的影响:来自肯尼亚西部基苏木自然实验研究的经验。

Comparison of household socioeconomic status classification methods and effects on risk estimation: lessons from a natural experimental study, Kisumu, Western Kenya.

机构信息

Center for Global Health Research, Kenya Medical Research Institute, P O Box 1578-40100, Kisumu, Kenya.

MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.

出版信息

Int J Equity Health. 2022 Apr 9;21(1):47. doi: 10.1186/s12939-022-01652-1.

Abstract

INTRODUCTION

Low household socioeconomic status is associated with unhealthy behaviours including poor diet and adverse health outcomes. Different methods leading to variations in SES classification has the potential to generate spurious research findings or misinform policy. In low and middle-income countries, there are additional complexities in defining household SES, a need for fieldwork to be conducted efficiently, and a dearth of information on how classification could impact estimation of disease risk.

METHODS

Using cross-sectional data from 200 households in Kisumu County, Western Kenya, we compared three approaches of classifying households into low, middle, or high SES: fieldworkers (FWs), Community Health Volunteers (CHVs), and a Multiple Correspondence Analysis econometric model (MCA). We estimated the sensitivity, specificity, inter-rater reliability and misclassification of the three methods using MCA as a comparator. We applied an unadjusted generalized linear model to determine prevalence ratios to assess the association of household SES status with a self-reported diagnosis of diabetes or hypertension for one household member.

RESULTS

Compared with MCA, FWs successfully classified 21.7% (95%CI = 14.4%-31.4%) of low SES households, 32.8% (95%CI = 23.2-44.3) of middle SES households, and no high SES households. CHVs successfully classified 22.5% (95%CI = 14.5%-33.1%) of low SES households, 32.8% (95%CI = 23.2%-44.3%) of middle SES households, and no high SES households. The level of agreement in SES classification was similar between FWs and CHVs but poor compared to MCA, particularly for high SES. None of the three methods differed in estimating the risk of hypertension or diabetes.

CONCLUSIONS

FW and CHV assessments are community-driven methods for SES classification. Compared to MCA, these approaches appeared biased towards low or middle SES households and not sensitive to high household SES. The three methods did not differ in risk estimation for diabetes and hypertension. A mix of approaches and further evaluation to refine SES classification methodology is recommended.

摘要

简介

低家庭社会经济地位与不良行为有关,包括不良饮食和不良健康结果。不同的方法导致 SES 分类的变化有可能产生虚假的研究结果或误导政策。在中低收入国家,定义家庭 SES 存在额外的复杂性,需要高效地进行实地工作,并且缺乏关于分类如何影响疾病风险估计的信息。

方法

使用来自肯尼亚西部基苏木县 200 户家庭的横断面数据,我们比较了三种将家庭分类为低、中或高 SES 的方法:现场工作者(FWs)、社区卫生志愿者(CHVs)和多对应分析计量经济学模型(MCA)。我们使用 MCA 作为比较器,估计了三种方法的敏感性、特异性、内部一致性和分类错误。我们应用未经调整的广义线性模型来确定患病率比,以评估一个家庭成员的自我报告的糖尿病或高血压诊断与家庭 SES 状况之间的关联。

结果

与 MCA 相比,FWs 成功地将 21.7%(95%CI=14.4%-31.4%)的低 SES 家庭、32.8%(95%CI=23.2%-44.3%)的中 SES 家庭和没有高 SES 家庭分类为低 SES 家庭。CHVs 成功地将 22.5%(95%CI=14.5%-33.1%)的低 SES 家庭、32.8%(95%CI=23.2%-44.3%)的中 SES 家庭和没有高 SES 家庭分类为低 SES 家庭。FWs 和 CHVs 在 SES 分类方面的一致性水平相似,但与 MCA 相比,特别是对于高 SES 家庭,一致性水平较差。三种方法在估计高血压或糖尿病风险方面没有差异。

结论

FW 和 CHV 评估是 SES 分类的社区驱动方法。与 MCA 相比,这些方法似乎偏向于低 SES 或中 SES 家庭,对高 SES 家庭不敏感。三种方法在糖尿病和高血压的风险估计方面没有差异。建议采用多种方法并进一步评估以完善 SES 分类方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/765a/8994881/45331946cb85/12939_2022_1652_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验