Suppr超能文献

高级弥散加权成像模型能更好地描述多发性硬化症中的白质神经退行性变和临床结果。

Advanced diffusion-weighted imaging models better characterize white matter neurodegeneration and clinical outcomes in multiple sclerosis.

机构信息

Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.

Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.

出版信息

J Neurol. 2022 Sep;269(9):4729-4741. doi: 10.1007/s00415-022-11104-z. Epub 2022 Apr 10.

Abstract

BACKGROUND

White matter (WM) atrophy is relevant in multiple sclerosis (MS), but the methods of analysis currently used are not specific for microstructural changes. The aims of this study were to assess the use of advanced diffusion-weighted imaging (DWI) techniques proposed as measures of baseline and longitudinal WM atrophy in MS and to analyze whether these measures helped explain MS clinical disability (including cognitive impairment) better than volumetric and diffusion tensor (DT)-derived measures.

METHODS

3DT1-weighted and DWI sequences were applied to 86 MS and 55 healthy controls (HC) at baseline and after one-year. Intra-cellular volume (v) maps were computed from neurite orientation dispersion and density imaging model. Voxel-wise fiber-bundle cross-section (FCS) atrophy in MS compared to HC was estimated. Maps of fractional anisotropy and mean diffusivity were also obtained from DWI for a comparison with the proposed advanced DW-derived measures (v and FCS).

RESULTS

Both at baseline and after 1-year, only FCS measure showed a significant atrophy in relapsing-remitting (RR) MS compared to HC and in progressive MS compared to RRMS, mainly located in specific WM tracts (corticospinal tract, splenium of the corpus callosum, left optic radiation, bilateral cingulum, middle cerebellar peduncle and anterior commissure, p value < 0.05). Global baseline FCS and v were the selected predictors of clinical (R-sq = 0.33, p = 0.007) and cognitive scores (R-sq = 0.29, p = 0.0014) in a linear regression model.

CONCLUSION

Voxel-based FCS was able to detect WM tracts atrophy in MS clinical phenotypes with greater anatomical specificity compared to other measures (volumetric and DT-derived measures of WM damage). FCS and v measured at baseline in the WM were the best predictors of clinical disability and cognitive impairment.

摘要

背景

脑白质(WM)萎缩与多发性硬化症(MS)有关,但目前使用的分析方法并非专门针对微观结构变化。本研究旨在评估将先进的弥散加权成像(DWI)技术应用于多发性硬化症的基线和纵向 WM 萎缩的方法,并分析这些方法是否比体积和弥散张量(DT)衍生的测量方法更能解释多发性硬化症的临床残疾(包括认知障碍)。

方法

在基线和一年后,对 86 例 MS 和 55 例健康对照者(HC)进行 3DT1 加权和 DWI 序列检查。从神经丝取向弥散和密度成像模型计算细胞内体积(v)图。估计 MS 与 HC 相比的体素纤维束横截面积(FCS)萎缩。还从 DWI 获得各向异性分数和平均弥散度图,以与提出的先进 DW 衍生测量值(v 和 FCS)进行比较。

结果

在基线和一年后,只有 FCS 测量值显示出与 HC 相比,RRMS 中的复发缓解型(RR)MS 以及与 RRMS 相比,进展型 MS 存在明显的萎缩,主要位于特定的 WM 束(皮质脊髓束、胼胝体压部、左侧视辐射、双侧扣带束、小脑上脚和前连合,p 值<0.05)。线性回归模型中,基线时的全局 FCS 和 v 是临床(R-sq=0.33,p=0.007)和认知评分(R-sq=0.29,p=0.0014)的首选预测指标。

结论

与其他测量方法(WM 损伤的体积和 DT 衍生测量方法)相比,基于体素的 FCS 能够更具解剖学特异性地检测 MS 临床表型中的 WM 束萎缩。WM 中基线时的 FCS 和 v 是临床残疾和认知障碍的最佳预测指标。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验