Devision of Neurobiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
Devision of Neurobiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
Semin Cell Dev Biol. 2023 Jan 15;133:10-19. doi: 10.1016/j.semcdb.2022.03.038. Epub 2022 Apr 6.
Brain development relies on dynamic morphogenesis and interactions of neurons. Filopodia are thin and highly dynamic membrane protrusions that are critically required for neuronal development and neuronal interactions with the environment. Filopodial interactions are typically characterized by non-deterministic dynamics, yet their involvement in developmental processes leads to stereotypic and robust outcomes. Here, we discuss recent advances in our understanding of how filopodial dynamics contribute to neuronal differentiation, migration, axonal and dendritic growth and synapse formation. Many of these advances are brought about by improved methods of live observation in intact developing brains. Recent findings integrate known and novel roles ranging from exploratory sensors and decision-making agents to pools for selection and mechanical functions. Different types of filopodial dynamics thereby reveal non-deterministic subcellular decision-making processes as part of genetically encoded brain development.
脑发育依赖于神经元的动态形态发生和相互作用。丝状伪足是一种薄而高度动态的细胞膜突起,对于神经元发育和神经元与环境的相互作用至关重要。丝状伪足的相互作用通常具有非确定性动力学,但它们在发育过程中的参与导致了刻板而稳健的结果。在这里,我们讨论了最近在理解丝状伪足动力学如何促进神经元分化、迁移、轴突和树突生长以及突触形成方面的进展。这些进展中的许多都是通过改进的在完整发育大脑中进行活体观察的方法带来的。最近的发现整合了已知和新的作用,从探索性传感器和决策代理到选择和机械功能的池。不同类型的丝状伪足动力学因此揭示了作为遗传编码脑发育一部分的非确定性亚细胞决策过程。