Department of Epileptology and Neurology, RWTH University Hospital Aachen, Germany.
Department of Epileptology and Neurology, RWTH University Hospital Aachen, Germany; Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
Seizure. 2022 May;98:27-33. doi: 10.1016/j.seizure.2022.03.022. Epub 2022 Apr 2.
Establishing the diagnosis of epilepsy can be challenging if interictal epileptic discharges (IEDs) or seizures are undetectable. Many individuals with epilepsy experience sleep disturbances. A reduced percentage of REM sleep (REM%) has been observed following seizures. We aimed to assess differences of REM% in individuals with epilepsy in comparison with differential diagnoses.
We performed a retrospective, monocentric, two-armed case-control study with 128 age-matched individuals who underwent ≥72 hours of continuous video-EEG monitoring at our epilepsy monitoring unit (EMU) for diagnostic evaluation. We assessed REM% on the first and last night of EMU admission. Logistic regressions models were used to evaluate the predictive value of REM%.
We included 64 individuals diagnosed with epilepsy and 64 with a differential diagnosis. REM% in the epilepsy group was significantly lower [12.2% (±4.7) vs. 17.2% (±5.2), p<0.001]. We found no significant influence of sex, age, anti-seizure, or other medications. A REM%-based and an IED and seizure-based regression model were not significantly different [area under the curve (AUC) 0.791 (95% confidence interval (CI): 0.713-0.870) vs. 0.853 (95% CI: 0.788-0.919), p=0.23]. A combined model, based on IEDs, seizures, and REM%, was superior to the IED model alone [0.933 (0.891-0.975), p<0.01].
Our study shows significantly reduced REM% in individuals with epilepsy. REM%-based models show a good predictive performance. REM% assessment could improve diagnostic accuracy - especially for challenging cases, e.g., when IEDs or seizures are absent and patient history and semiology appear ambiguous. REM% as a biomarker should be evaluated in prospective, multicentric trials.
如果发作间期癫痫放电(IEDs)或癫痫发作无法检测到,癫痫的诊断可能具有挑战性。许多癫痫患者存在睡眠障碍。观察到癫痫发作后 REM 睡眠(REM%)的比例降低。我们旨在评估与鉴别诊断相比,癫痫患者 REM%的差异。
我们进行了一项回顾性、单中心、双臂病例对照研究,共纳入 128 名年龄匹配的个体,他们在我们的癫痫监测单元(EMU)进行了≥72 小时的连续视频-脑电图监测,以进行诊断评估。我们在 EMU 入院的第一晚和最后一晚评估 REM%。使用逻辑回归模型评估 REM%的预测价值。
我们纳入了 64 名被诊断为癫痫的患者和 64 名具有鉴别诊断的患者。癫痫组的 REM%明显较低[12.2%(±4.7)比 17.2%(±5.2),p<0.001]。我们没有发现性别、年龄、抗癫痫药物或其他药物的显著影响。基于 REM%的模型和基于 IED 和癫痫发作的回归模型没有显著差异[曲线下面积(AUC)0.791(95%置信区间(CI):0.713-0.870)比 0.853(95%CI:0.788-0.919),p=0.23]。基于 IED、癫痫发作和 REM%的综合模型优于单独基于 IED 的模型[0.933(0.891-0.975),p<0.01]。
我们的研究表明,癫痫患者的 REM%明显降低。基于 REM%的模型具有良好的预测性能。REM%评估可以提高诊断准确性-特别是对于具有挑战性的病例,例如当 IED 或癫痫发作不存在且患者病史和症状学表现不明确时。REM%作为生物标志物应在前瞻性、多中心试验中进行评估。