Kwon Kanghyun, Lee Yoonsung, Kim Man S
Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
Department of Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
Cells. 2025 Aug 28;14(17):1331. doi: 10.3390/cells14171331.
The relationship between sleep and epilepsy involves complex interactions between thalamocortical circuits, circadian mechanisms, and sleep architecture that fundamentally influence seizure susceptibility and cognitive outcomes. Epileptic activity disrupts essential sleep oscillations, particularly sleep spindles generated by thalamic circuits. Thalamic epileptic spikes actively compete with physiological sleep spindles, impairing memory consolidation and contributing to cognitive dysfunction in epileptic encephalopathy. This disruption explains why patients with epilepsy often experience learning difficulties despite adequate seizure control. Sleep stages show differential seizure susceptibility. REM sleep provides robust protection through enhanced GABAergic inhibition and motor neuron suppression, while non-REM sleep, particularly slow-wave sleep, increases seizure risk. These observations reveal fundamental mechanisms of seizure control within normal brain physiology. Circadian clock genes () play crucial roles in seizure modulation. Dysregulation of these molecular timekeepers creates permissive conditions for seizure generation while being simultaneously disrupted by epileptic activity, establishing a bidirectional relationship. These mechanistic insights are driving chronobiological therapeutic approaches, including precisely timed antiseizure medications, sleep optimization strategies, and orexin/hypocretin system interventions. This understanding enables a paradigm shift from simple seizure suppression toward targeted restoration of physiological brain rhythms, promising transformative epilepsy management through sleep-informed precision medicine.
睡眠与癫痫之间的关系涉及丘脑皮质回路、昼夜节律机制和睡眠结构之间的复杂相互作用,这些相互作用从根本上影响癫痫易感性和认知结果。癫痫活动会扰乱基本的睡眠振荡,尤其是丘脑回路产生的睡眠纺锤波。丘脑癫痫棘波会与生理性睡眠纺锤波积极竞争,损害记忆巩固,并导致癫痫性脑病中的认知功能障碍。这种干扰解释了为什么癫痫患者尽管癫痫发作得到了充分控制,但仍经常出现学习困难。睡眠阶段显示出不同的癫痫易感性。快速眼动睡眠通过增强γ-氨基丁酸能抑制和运动神经元抑制提供强大的保护,而非快速眼动睡眠,尤其是慢波睡眠,则会增加癫痫发作风险。这些观察结果揭示了正常脑生理学中癫痫控制的基本机制。生物钟基因在癫痫调节中起着关键作用。这些分子时钟的失调为癫痫发作创造了有利条件,同时又被癫痫活动所扰乱,从而建立了一种双向关系。这些机制性见解正在推动生物钟治疗方法的发展,包括精确计时的抗癫痫药物、睡眠优化策略和食欲素/下丘脑泌素系统干预措施。这种理解使得从简单的癫痫抑制向有针对性地恢复生理性脑节律的范式转变成为可能,有望通过基于睡眠的精准医学实现变革性的癫痫管理。