Suppr超能文献

来自微生物组的宏基因组组装基因组为了解海藻的潜在代谢功能提供了见解。

Metagenome-Assembled Genomes From Microbiome Provide Insights Into the Potential Metabolic Functions to the Seaweed.

作者信息

Wang Junhao, Tang Xianghai, Mo Zhaolan, Mao Yunxiang

机构信息

Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China.

Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China.

出版信息

Front Microbiol. 2022 Mar 23;13:857901. doi: 10.3389/fmicb.2022.857901. eCollection 2022.

Abstract

is an economically important edible red alga worldwide. The aquaculture industry and production have grown considerably in recent decades. Microbial communities inhabit the algal surface and produce a variety of compounds that can influence host adaptation. Previous studies on the microbiome were focused on the microbial components or the function of specific microbial lineages, which frequently exclude metabolic information and contained only a small fraction of the overall community. Here, we performed a genome-centric analysis to study the metabolic potential of the phycosphere bacteria. We reconstructed 202 unique metagenome-assembled genomes (MAGs) comprising all major taxa present within the microbiome. The addition of MAGs to the genome tree containing all publicly available -associated microorganisms increased the phylogenetic diversity by 50% within the bacteria. Metabolic reconstruction of the MAGs showed functional redundancy across taxa for pathways including nitrate reduction, taurine metabolism, organophosphorus, and 1-aminocyclopropane-1-carboxylate degradation, auxin, and vitamin B synthesis. Some microbial functions, such as auxin and vitamin B synthesis, that were previously assigned to a few -associated microorganisms were distributed across the diverse epiphytic taxa. Other metabolic pathways, such as ammonia oxidation, denitrification, and sulfide oxidation, were confined to specific keystone taxa.

摘要

是全球经济上重要的可食用红藻。近几十年来,水产养殖业及其产量大幅增长。微生物群落栖息在藻类表面,并产生多种可影响宿主适应性的化合物。以往对微生物组的研究主要集中在微生物成分或特定微生物谱系的功能上,这些研究常常排除代谢信息,且仅涵盖了整个群落的一小部分。在此,我们进行了一项以基因组为中心的分析,以研究藻际细菌的代谢潜力。我们重建了202个独特的宏基因组组装基因组(MAGs),涵盖了微生物组中存在的所有主要分类群。将MAGs添加到包含所有公开可用的与[藻类名称未提及]相关微生物的基因组树中,使细菌内的系统发育多样性增加了50%。对MAGs的代谢重建显示,在包括硝酸盐还原、牛磺酸代谢、有机磷和1-氨基环丙烷-1-羧酸降解、生长素和维生素B合成等途径中,各分类群之间存在功能冗余。一些以前被认为是少数与[藻类名称未提及]相关微生物所特有的微生物功能,如生长素和维生素B合成,分布在不同的附生分类群中。其他代谢途径,如氨氧化、反硝化和硫化物氧化,则局限于特定的关键分类群。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0ae/8984609/acecb701dc36/fmicb-13-857901-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验