Suppr超能文献

基于机器学习的锂离子电池健康状态预测方法。

Protocol for state-of-health prediction of lithium-ion batteries based on machine learning.

机构信息

Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming 650500, China.

Department of Aeronautical and Automotive Engineering, Loughborough University, LE11 3TU Leicestershire, UK.

出版信息

STAR Protoc. 2022 Apr 4;3(2):101272. doi: 10.1016/j.xpro.2022.101272. eCollection 2022 Jun 17.

Abstract

Accurate estimates of State of Health (SoH) are critical for characterizing the aging of lithium-ion batteries. This protocol combines feature extraction and a representative machine learning algorithm (i.e., least-squares support vector machine) for SoH prediction of lithium-ion batteries. We detail the step-by-step estimation process, followed by validation of the constructed model with a maximum absolute error of 1.62%. Overall, the proposed approach can efficiently track the aging trajectory and ensure precise SoH prediction. For complete details on the use and execution of this protocol, please refer to Shu et al. (2021b).

摘要

准确估计电池健康状态(State of Health,SoH)对于描述锂离子电池的老化至关重要。本方案结合特征提取和具有代表性的机器学习算法(即最小二乘支持向量机),对锂离子电池的 SoH 进行预测。我们详细介绍了逐步估计过程,随后用最大绝对误差为 1.62%验证了构建模型的有效性。总体而言,该方法可以有效跟踪老化轨迹并确保精确的 SoH 预测。如需了解本方案的详细使用方法和执行步骤,请参考 Shu 等人(2021b)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fb1/8987387/8b4a9030b91c/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验