Suppr超能文献

基于神经网络模型库的锂离子电池在线荷电状态和健康状态估计。

Estimation of Online State of Charge and State of Health Based on Neural Network Model Banks Using Lithium Batteries.

机构信息

School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea.

出版信息

Sensors (Basel). 2022 Jul 25;22(15):5536. doi: 10.3390/s22155536.

Abstract

Lithium batteries are secondary batteries used as power sources in various applications, such as electric vehicles, portable devices, and energy storage devices. However, because explosions frequently occur during their operation, improving battery safety by developing battery management systems with excellent reliability and efficiency has become a recent research focus. The performance of the battery management system varies depending on the estimated accuracy of the state of charge (SOC) and state of health (SOH). Therefore, we propose a SOH and SOC estimation method for lithium-ion batteries in this study. The proposed method includes four neural network models-one is used to estimate the SOH, and the other three are configured as normal, caution, and fault neural network model banks for estimating the SOC. The experimental results demonstrate that the proposed method using the long short-term memory model outperforms its counterparts.

摘要

锂电池是二次电池,用于各种应用,如电动汽车、便携式设备和储能设备作为电源。然而,由于在其运行过程中经常发生爆炸,因此通过开发具有出色可靠性和效率的电池管理系统来提高电池安全性已成为近期的研究重点。电池管理系统的性能取决于对充电状态(SOC)和健康状态(SOH)的估计精度。因此,在本研究中,我们提出了一种锂离子电池的 SOH 和 SOC 估计方法。该方法包括四个神经网络模型,一个用于估计 SOH,另外三个被配置为正常、警告和故障神经网络模型库,用于估计 SOC。实验结果表明,使用长短期记忆模型的建议方法优于其对应方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef8c/9330591/a8c30e70df2c/sensors-22-05536-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验