Suppr超能文献

利用基于模糊规则的系统从整个蛋白质组中筛选主要组织相容性复合物 I 类肽表位:在. 的蛋白质组上的实现

Harnessing Fuzzy Rule Based System for Screening Major Histocompatibility Complex Class I Peptide Epitopes from the Whole Proteome: An Implementation on the Proteome of .

机构信息

Department of Bioinformatics, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, India.

出版信息

J Comput Biol. 2022 Sep;29(9):1045-1058. doi: 10.1089/cmb.2021.0464. Epub 2022 Apr 11.

Abstract

The development of peptide-based vaccines is enhanced by immunoinformatics, which predicts the patterns that B cells and T cells recognize. Although several tools are available for predicting the Major histocompatibility complex (MHC-I) binding peptides, the wide variants of human leucocyte antigen allele make it challenging to choose a peptide that will induce an immune response in a majority of people. In addition, for a peptide to be considered a potential vaccine candidate, factors such as T cell affinity, proteasome cleavage, and similarity to human proteins also play a major role. Identifying peptides that satisfy the earlier cited measures across the entire proteome is, therefore, challenging. Hence, the fuzzy inference system (FIS) is proposed to detect each peptide's potential as a vaccine candidate and assign it either a very high, high, moderate, or low ranking. The FIS includes input features from 6 modules (binding of 27 major alleles, T cell propensity, pro-inflammatory response, proteasome cleavage, transporter associated with antigen processing, and similarity with human peptide) and rules derived from an observation of features on positive samples. On validation of experimentally verified peptides, a balanced accuracy of ∼80% was achieved, with a Mathew's correlation coefficient score of 0.67 and an F-1 score of 0.74. In addition, the method was implemented on complete proteome of , which contains ∼4,800,000 peptides. Lastly, a searchable database of the ranked results of the proteome was made and is available online (MHC-FIS-LdDB). It is hoped that this method will simplify the identification of potential MHC-I binding candidates from a large proteome.

摘要

免疫信息学增强了基于肽的疫苗的发展,它可以预测 B 细胞和 T 细胞识别的模式。尽管有几种工具可用于预测主要组织相容性复合体(MHC-I)结合肽,但人类白细胞抗原等位基因的广泛变体使得选择一种能够在大多数人中诱导免疫反应的肽具有挑战性。此外,为了使肽被认为是一种有潜力的候选疫苗,T 细胞亲和力、蛋白酶体切割和与人类蛋白质的相似性等因素也起着重要作用。因此,识别满足上述所有措施的整个蛋白质组中的肽是具有挑战性的。因此,提出了模糊推理系统(FIS)来检测每个肽作为候选疫苗的潜力,并将其分配到非常高、高、中或低的等级。FIS 包括来自 6 个模块的输入特征(27 个主要等位基因的结合、T 细胞倾向、促炎反应、蛋白酶体切割、抗原加工相关转运体和与人类肽的相似性)和从阳性样本特征观察中得出的规则。在对实验验证的肽进行验证时,实现了约 80%的平衡准确性,马修斯相关系数评分为 0.67,F1 得分为 0.74。此外,该方法已在包含约 480 万个肽的完整蛋白质组上实施。最后,建立了一个可搜索的蛋白质组排名结果数据库,并在线提供(MHC-FIS-LdDB)。希望这种方法能够简化从大型蛋白质组中识别潜在 MHC-I 结合候选物的过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验