Suppr超能文献

免疫蛋白酶体和组成型蛋白酶体切割的计算分析和建模。

Computational analysis and modeling of cleavage by the immunoproteasome and the constitutive proteasome.

机构信息

Laboratory of Immunomedicine, Department of Microbiology I-Immunology, Facultad de Medicina, Universidad Complutense de Madrid, Ave Complutense S/N, Madrid 28040, Spain.

出版信息

BMC Bioinformatics. 2010 Sep 23;11:479. doi: 10.1186/1471-2105-11-479.

Abstract

BACKGROUND

Proteasomes play a central role in the major histocompatibility class I (MHCI) antigen processing pathway. They conduct the proteolytic degradation of proteins in the cytosol, generating the C-terminus of CD8 T cell epitopes and MHCI-peptide ligands (P1 residue of cleavage site). There are two types of proteasomes, the constitutive form, expressed in most cell types, and the immunoproteasome, which is constitutively expressed in mature dendritic cells. Protective CD8 T cell epitopes are likely generated by the immunoproteasome and the constitutive proteasome, and here we have modeled and analyzed the cleavage by these two proteases.

RESULTS

We have modeled the immunoproteasome and proteasome cleavage sites upon two non-overlapping sets of peptides consisting of 553 CD8 T cell epitopes, naturally processed and restricted by human MHCI molecules, and 382 peptides eluted from human MHCI molecules, respectively, using N-grams. Cleavage models were generated considering different epitope and MHCI-eluted fragment lengths and the same number of C-terminal flanking residues. Models were evaluated in 5-fold cross-validation. Judging by the Mathew's Correlation Coefficient (MCC), optimal cleavage models for the proteasome (MCC = 0.43 ± 0.07) and the immunoproteasome (MCC = 0.36 ± 0.06) were obtained from 12-residue peptide fragments. Using an independent dataset consisting of 137 HIV1-specific CD8 T cell epitopes, the immunoproteasome and proteasome cleavage models achieved MCC values of 0.30 and 0.18, respectively, comparatively better than those achieved by related methods. Using ROC analyses, we have also shown that, combined with MHCI-peptide binding predictions, cleavage predictions by the immunoproteasome and proteasome models significantly increase the discovery rate of CD8 T cell epitopes restricted by different MHCI molecules, including A0201, A0301, A2402, B0702, B*2705.

CONCLUSIONS

We have developed models that are specific to predict cleavage by the proteasome and the immunoproteasome. These models ought to be instrumental to identify protective CD8 T cell epitopes and are readily available for free public use at http://imed.med.ucm.es/Tools/PCPS/.

摘要

背景

蛋白酶体在主要组织相容性复合体 I(MHC I)抗原加工途径中发挥核心作用。它们在细胞质中进行蛋白质的蛋白水解降解,生成 CD8 T 细胞表位和 MHC I-肽配体(切割位点的 C 末端)的 C 末端。蛋白酶体有两种类型,一种是组成型的,在大多数细胞类型中表达,另一种是免疫蛋白酶体,在成熟树突状细胞中组成型表达。保护性 CD8 T 细胞表位可能由免疫蛋白酶体和组成型蛋白酶体产生,我们在此对这两种蛋白酶的切割进行了建模和分析。

结果

我们使用 N-gram 对由 553 个 CD8 T 细胞表位组成的两个不重叠的肽组和由 382 个从人 MHC I 分子洗脱的肽进行了免疫蛋白酶体和蛋白酶体切割位点建模,这些肽分别受人类 MHC I 分子限制和自然加工。使用不同的表位和 MHC I 洗脱片段长度以及相同数量的 C 末端侧翼残基来生成切割模型。使用 5 倍交叉验证评估模型。根据马修相关系数(MCC),蛋白酶体(MCC=0.43±0.07)和免疫蛋白酶体(MCC=0.36±0.06)的最佳切割模型是从 12 个残基肽片段获得的。使用由 137 个 HIV1 特异性 CD8 T 细胞表位组成的独立数据集,免疫蛋白酶体和蛋白酶体切割模型的 MCC 值分别为 0.30 和 0.18,与相关方法相比,这两个值都有了显著提高。通过 ROC 分析,我们还表明,结合 MHC I-肽结合预测,免疫蛋白酶体和蛋白酶体模型的切割预测显著增加了不同 MHC I 分子限制的 CD8 T 细胞表位的发现率,包括 A0201、A0301、A2402、B0702、B*2705。

结论

我们开发了专门用于预测蛋白酶体和免疫蛋白酶体切割的模型。这些模型应该有助于识别保护性 CD8 T 细胞表位,并且可以在 http://imed.med.ucm.es/Tools/PCPS/ 上免费供公众使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c649/2955702/1ecfa380319c/1471-2105-11-479-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验