Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada.
Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada.
Ecology. 2022 Aug;103(8):e3718. doi: 10.1002/ecy.3718. Epub 2022 Jun 9.
Monitoring technologies now provide real-time animal location information, which opens up the possibility of developing forecasting systems to fuse these data with movement models to predict future trajectories. State-space modeling approaches are well established for retrospective location estimation and behavioral inference through state and parameter estimation. Here we use a state-space model within a comprehensive data assimilative framework for probabilistic animal movement forecasting. Real-time location information is combined with stochastic movement model predictions to provide forecasts of future animal locations and trajectories, as well as estimates of key behavioral parameters. Implementation uses ensemble-based sequential Monte Carlo methods (a particle filter). We first apply the framework to an idealized case using a nondimensional animal movement model based on a continuous-time random walk process. A set of numerical forecasting experiments demonstrates the workflow and key features, such as the online estimation of behavioral parameters using state augmentation, the use of potential functions for habitat preference, and the role of observation error and sampling frequency on forecast skill. For a realistic demonstration, we adapt the framework to short-term forecasting of the endangered southern resident killer whale (SRKW) in the Salish Sea using visual sighting information wherein the potential function reflects historical habitat utilization of SRKW. We successfully estimate whale locations up to 2.5 h in advance with a moderate prediction error (<5 km), providing reasonable lead-in time to mitigate vessel-whale interactions. It is argued that this forecasting framework can be used to synthesize diverse data types and improve animal movement models and behavioral understanding and has the potential to lead to important advances in movement ecology.
监测技术现在提供实时动物位置信息,这为开发预测系统提供了可能性,可将这些数据与运动模型融合,以预测未来的轨迹。状态空间建模方法在通过状态和参数估计进行回溯位置估计和行为推断方面已经非常成熟。在这里,我们在综合数据同化框架内使用状态空间模型进行概率动物运动预测。实时位置信息与随机运动模型预测相结合,提供未来动物位置和轨迹的预测,以及关键行为参数的估计。实现使用基于集合的顺序蒙特卡罗方法(粒子滤波器)。我们首先使用基于连续时间随机游动过程的非尺度动物运动模型在理想化案例中应用该框架。一组数值预测实验演示了工作流程和关键特征,例如使用状态扩充在线估计行为参数、使用势函数表示栖息地偏好以及观测误差和采样频率对预测技能的作用。为了进行现实演示,我们使用视觉目击信息将该框架适应于在萨利希海(Salish Sea)进行的濒危南部居民虎鲸(SRKW)的短期预测,其中势函数反映了 SRKW 的历史栖息地利用情况。我们成功地提前 2.5 小时估计鲸鱼的位置,预测误差较小(<5km),为缓解船只与鲸鱼之间的相互作用提供了合理的提前时间。有人认为,该预测框架可用于综合多种数据类型,改进动物运动模型和行为理解,并有可能在运动生态学方面取得重要进展。