Vees Charlotte Anne, Herwig Christoph, Pflügl Stefan
Technische Universität Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
Technische Universität Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria; Competence Center CHASE GmbH, Altenbergerstraße 69, 4040 Linz, Austria.
Bioresour Technol. 2022 Jun;353:127138. doi: 10.1016/j.biortech.2022.127138. Epub 2022 Apr 8.
In this study, continuous cultivations of C.carboxidivorans to study heterotrophic and mixotrophic conversion of glucose and H, CO, and CO were established. Glucose fermentations at pH 6 showed a high ratio of alcohol-to-acid production of 2.79 mol mol. While H or CO were not utilized together with glucose, CO feeding drastically increased the combined alcohol titer to 9.1 g l. Specifically, CO enhanced acetate (1.9-fold) and ethanol (1.7-fold) production and triggered chain elongation to butanol (1.5-fold) production but did not change the alcohol:acid ratio. Flux balance analysis showed that CO served both as a carbon and energy source, and CO mixotrophy displayed a carbon and energy efficiency of 45 and 77%, respectively. This study expands the knowledge on physiology and metabolism of C.carboxidivorans and can serve as the starting point for rational engineering and process intensification to establish efficient production of alcohols and acids from carbon waste.
在本研究中,建立了嗜羧基甲烷菌(C.carboxidivorans)的连续培养体系,以研究葡萄糖、氢气、一氧化碳和二氧化碳的异养和混合营养转化。在pH值为6的条件下进行葡萄糖发酵,乙醇与酸的产量比高达2.79 mol/mol。虽然氢气或一氧化碳不能与葡萄糖一起被利用,但通入一氧化碳可使乙醇总产量大幅提高至9.1 g/L。具体而言,一氧化碳提高了乙酸盐(1.9倍)和乙醇(1.7倍)的产量,并引发了向丁醇(1.5倍)的链延伸,但未改变乙醇与酸的比例。通量平衡分析表明,一氧化碳既是碳源又是能源,混合营养利用一氧化碳时,碳效率和能源效率分别为45%和77%。本研究拓展了对嗜羧基甲烷菌生理和代谢的认识,可为合理工程设计和过程强化提供起点,从而实现从碳废物高效生产醇类和酸类。