Department for Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, 52074, Aachen, Germany.
Microb Cell Fact. 2022 May 14;21(1):85. doi: 10.1186/s12934-022-01802-8.
The replacement of fossil fuels and petrochemicals with sustainable alternatives is necessary to mitigate the effects of climate change and also to counteract diminishing fossil resources. Acetogenic microorganisms such as Clostridium spp. are promising sources of fuels and basic chemical precursors because they efficiently utilize CO and CO as carbon source. However the conversion into high titers of butanol and hexanol is challenging.
Using a metabolic engineering approach we transferred a 17.9-kb gene cluster via conjugation, containing 13 genes from C. kluyveri and C. acetobutylicum for butanol and hexanol biosynthesis, into C. ljungdahlii. Plasmid-based expression resulted in 1075 mg L butanol and 133 mg L hexanol from fructose in complex medium, and 174 mg L butanol and 15 mg L hexanol from gaseous substrate (20% CO and 80% H) in minimal medium. Product formation was increased by the genomic integration of the heterologous gene cluster. We confirmed the expression of all 13 enzymes by targeted proteomics and identified potential rate-limiting steps. Then, we removed the first-round selection marker using CRISPR/Cas9 and integrated an additional 7.8 kb gene cluster comprising 6 genes from C. carboxidivorans. This led to a significant increase in the hexanol titer (251 mg L) at the expense of butanol (158 mg L), when grown on CO and H in serum bottles. Fermentation of this strain at 2-L scale produced 109 mg L butanol and 393 mg L hexanol.
We thus confirmed the function of the butanol/hexanol biosynthesis genes and achieved hexanol biosynthesis in the syngas-fermenting species C. ljungdahlii for the first time, reaching the levels produced naturally by C. carboxidivorans. The genomic integration strain produced hexanol without selection and is therefore suitable for continuous fermentation processes.
用可持续替代品替代化石燃料和石化产品对于缓解气候变化的影响以及对抗日益减少的化石资源是必要的。产乙酸微生物如 Clostridium spp. 是有前途的燃料和基本化学前体来源,因为它们能够有效地利用 CO 和 CO 作为碳源。然而,将其转化为高浓度的丁醇和己醇具有挑战性。
通过代谢工程方法,我们通过共轭将一个包含来自 C. kluyveri 和 C. acetobutylicum 的 13 个基因的 17.9-kb 基因簇转移到 C. ljungdahlii 中,用于丁醇和己醇的生物合成。基于质粒的表达在复杂培养基中从果糖产生了 1075mg L 的丁醇和 133mg L 的己醇,在最小培养基中从气态底物(20%CO 和 80%H)产生了 174mg L 的丁醇和 15mg L 的己醇。通过基因组整合异源基因簇,产物形成得到了增加。我们通过靶向蛋白质组学证实了所有 13 种酶的表达,并确定了潜在的限速步骤。然后,我们使用 CRISPR/Cas9 去除了第一轮选择标记,并整合了一个包含来自 C. carboxidivorans 的 6 个基因的额外 7.8kb 基因簇。这导致在血清瓶中以 CO 和 H 生长时,己醇的浓度显著增加(251mg L),而丁醇的浓度降低(158mg L)。在 2-L 规模的发酵中,该菌株产生了 109mg L 的丁醇和 393mg L 的己醇。
因此,我们证实了丁醇/己醇生物合成基因的功能,并首次在能够发酵合成气的物种 C. ljungdahlii 中实现了己醇的生物合成,达到了 C. carboxidivorans 自然产生的水平。基因组整合菌株在没有选择的情况下产生己醇,因此适用于连续发酵过程。