Suppr超能文献

在美国北卡罗来纳州中部的一个城市流域,土壤入渗率被模型低估了。

Soil infiltration rates are underestimated by models in an urban watershed in central North Carolina, USA.

作者信息

Bergeson Chase B, Martin Katherine L, Doll Barbara, Cutts Bethany B

机构信息

Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA.

Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA; Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, USA.

出版信息

J Environ Manage. 2022 Jul 1;313:115004. doi: 10.1016/j.jenvman.2022.115004. Epub 2022 Apr 8.

Abstract

Stormwater management problems are expanding as urbanization continues and precipitation patterns are increasingly extreme. Urban soils are often more disturbed and compacted than non-urban soils, therefore, rainfall run-off estimates based on models designed for non-urban soils may not be accurate due to altered soil infiltration rates. Our objective was to quantify soil infiltration rates across an urban watershed and compare them to estimates from rainfall-runoff models commonly used in stormwater management (Horton and Green-Ampt) as well as an alternate, random-forest model created using available geospatial data. We measured infiltration rates and collected data on soil properties (texture, bulk density) and context (land use, ground cover, time since development) at 89 points across the 102 ha Walnut Creek watershed in Raleigh, North Carolina (USA). Forest land covers and forest ground covers (leaf litter) had the highest infiltration capacities; however, all of our measurements indicate that urban soils in the Walnut Creek watershed are able to absorb most precipitation events and are likely capable of infiltrating additional urban stormwater runoff. Comparisons between observations and the rainfall-runoff model estimates reveal that both underestimated urban soil infiltration rates. Despite higher than expected urban soil infiltration capacity, stormwater management remains a challenge in this urban watershed. Therefore, to reduce stormwater runoff from impervious surfaces through soil infiltration, impervious surfaces should be disconnected, especially adjacent to new development, and urban forests should be conserved. Further, because our random forest model more accurately captured watershed infiltration rates than the rainfall-runoff models, we propose this type of machine learning approach as an alternative method for informing stormwater management and prioritizing areas for impervious disconnection.

摘要

随着城市化进程的持续以及降水模式愈发极端,雨水管理问题不断扩大。城市土壤往往比非城市土壤受到更多扰动和压实,因此,基于为非城市土壤设计的模型得出的降雨径流估算,可能因土壤入渗率的改变而不准确。我们的目标是量化城市流域内的土壤入渗率,并将其与雨水管理中常用的降雨径流模型(霍顿模型和格林 - 安普特模型)以及利用现有地理空间数据创建的另一种随机森林模型的估算值进行比较。我们在美国北卡罗来纳州罗利市102公顷的核桃溪流域的89个点位测量了入渗率,并收集了土壤特性(质地、容重)和背景信息(土地利用、地面覆盖、开发后的时间)的数据。林地覆盖和森林地面覆盖(落叶层)具有最高的入渗能力;然而,我们所有的测量结果表明,核桃溪流域的城市土壤能够吸收大多数降雨事件,并且很可能能够渗透额外的城市雨水径流。观测值与降雨径流模型估算值之间的比较表明,两者都低估了城市土壤入渗率。尽管城市土壤入渗能力高于预期,但在这个城市流域,雨水管理仍然是一项挑战。因此,为了通过土壤渗透减少不透水表面的雨水径流,应断开不透水表面的连接,特别是在新开发区域附近,并且应保护城市森林。此外,由于我们的随机森林模型比降雨径流模型更准确地捕捉了流域入渗率,我们建议将这种机器学习方法作为一种替代方法,用于为雨水管理提供信息并确定不透水表面断开连接的优先区域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验