Navarro Elena, González María Ujué, Béron Fanny, Tejo Felipe, Escrig Juan, García-Martín José Miguel
Instituto de Magnetismo Aplicado, Universidad Complutense de Madrid-ADIF-CSIC, P.O. Box 155, Las Rozas, 28230 Madrid, Spain.
Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain.
Nanomaterials (Basel). 2022 Apr 1;12(7):1186. doi: 10.3390/nano12071186.
Ferromagnetic films down to thicknesses of tens of nanometers and composed by polycrystalline Fe and FeO nanopillars are grown in large areas by glancing angle deposition with magnetron sputtering (MS-GLAD). The morphological features of these films strongly depend on the growth conditions. Vertical or tilted nanopillars have been fabricated depending on whether the substrate is kept rotating azimuthally during deposition or not, respectively. The magnetic properties of these nanopillars films, such as hysteresis loops squareness, adjustable switching fields, magnetic anisotropy and coercivity, can be tuned with the specific morphology. In particular, the growth performed through a collimator mask mounted onto a not rotating azimuthally substrate produces almost isolated well-defined tilted nanopillars that exhibit a magnetic hardening. The first-order reversal curves diagrams and micromagnetic simulations revealed that a growth-induced uniaxial anisotropy, associated with an anisotropic surface morphology produced by the glancing angle deposition in the direction perpendicular to the atomic flux, plays an important role in the observed magnetic signatures. These results demonstrate the potential of the MS-GLAD method to fabricate nanostructured films in large area with tailored structural and magnetic properties for technological applications.
通过磁控溅射掠角沉积(MS-GLAD)在大面积上生长出厚度达几十纳米、由多晶铁和氧化亚铁纳米柱组成的铁磁薄膜。这些薄膜的形态特征强烈依赖于生长条件。垂直或倾斜的纳米柱已分别根据沉积过程中基板是否保持方位角旋转而制备出来。这些纳米柱薄膜的磁性,如磁滞回线的矩形度、可调节的开关场、磁各向异性和矫顽力,可以通过特定的形态进行调整。特别是,通过安装在不进行方位角旋转的基板上的准直器掩膜进行的生长产生了几乎孤立的、定义明确的倾斜纳米柱,这些纳米柱表现出磁硬化现象。一阶反转曲线图和微磁模拟表明,与垂直于原子通量方向的掠角沉积产生的各向异性表面形态相关的生长诱导单轴各向异性,在观察到的磁特性中起重要作用。这些结果证明了MS-GLAD方法在大面积制备具有定制结构和磁性特性的纳米结构薄膜以用于技术应用方面的潜力。