Hájek Jiří, Nový Zbyšek, Kučerová Ludmila, Jirková Hana, Salvetr Pavel, Motyčka Petr, Hajšman Jan, Bystřická Tereza
COMTES FHT a. s., Prumyslova 995, 334 41 Dobrany, Czech Republic.
Regional Technological Institute, University of West Bohemia, Univerzitni 8, 301 00 Plzen, Czech Republic.
Materials (Basel). 2022 Mar 30;15(7):2539. doi: 10.3390/ma15072539.
This paper introduces a new alloying concept for low-density steels. Based on model calculations, samples-or "heats"-with 0.7 wt% C, 1.45 wt% Si, 2 wt% Cr, 0.5 wt% Ni, and an aluminium content varying from 5 to 7 wt% are prepared. The alloys are designed to obtain steel with reduced density and increased corrosion resistance suitable for products subjected to high dynamic stress during operation. Their density is in the range from 7.2 g cm to 6.96 g cm. Basic thermophysical measurements are carried out on all the heats to determine the critical points of each phase transformation in the solid state, supported by metallographic analysis on SEM and LM or the EDS analysis of each phase. It is observed that even at very high austenitisation temperatures of 1100 °C, it is not possible to change the two-phase structure of ferrite and austenite. A substantial part of the austenite is transformed into martensite during cooling at 50 °C s. The carbide kappa phase is segregated at lower cooling rates (around 2.5 °C s).
本文介绍了一种低密度钢的新型合金化概念。基于模型计算,制备了含0.7 wt%碳、1.45 wt%硅、2 wt%铬、0.5 wt%镍且铝含量在5 wt%至7 wt%之间变化的样品(或“炉次”)。这些合金旨在获得密度降低且耐腐蚀性增强的钢,适用于在运行过程中承受高动态应力的产品。它们的密度范围为7.2 g/cm³至6.96 g/cm³。对所有炉次进行了基本热物理测量,以确定固态下各相变的临界点,并辅以扫描电子显微镜(SEM)和光学金相显微镜(LM)的金相分析或各相的能谱分析(EDS)。观察到即使在1100℃的非常高的奥氏体化温度下,也不可能改变铁素体和奥氏体的两相结构。在50℃/s的冷却速度下,大量奥氏体在冷却过程中转变为马氏体。碳化物κ相在较低冷却速度(约2.5℃/s)下发生偏析。