Suppr超能文献

利用传感器和/或机器学习来减轻野生动物与车辆碰撞的智能系统:综述、挑战和新视角。

Intelligent Systems Using Sensors and/or Machine Learning to Mitigate Wildlife-Vehicle Collisions: A Review, Challenges, and New Perspectives.

机构信息

Department of Mathematics, Rhodes University, Artillery Rd., Grahamstown 6139, South Africa.

出版信息

Sensors (Basel). 2022 Mar 23;22(7):2478. doi: 10.3390/s22072478.

Abstract

Worldwide, the persistent trend of human and animal life losses, as well as damage to properties due to wildlife-vehicle collisions (WVCs) remains a significant source of concerns for a broad range of stakeholders. To mitigate their occurrences and impact, many approaches are being adopted, with varying successes. Because of their increased versatility and increasing efficiency, Artificial Intelligence-based methods have been experiencing a significant level of adoption. The present work extensively reviews the literature on intelligent systems incorporating sensor technologies and/or machine learning methods to mitigate WVCs. Included in our review is an investigation of key factors contributing to human-wildlife conflicts, as well as a discussion of dominant state-of-the-art datasets used in the mitigation of WVCs. Our study combines a systematic review with bibliometric analysis. We find that most animal detection systems (excluding autonomous vehicles) are relying neither on state-of-the-art datasets nor on recent breakthrough machine learning approaches. We, therefore, argue that the use of the latest datasets and machine learning techniques will minimize false detection and improve model performance. In addition, the present work covers a comprehensive list of associated challenges ranging from failure to detect hotspot areas to limitations in training datasets. Future research directions identified include the design and development of algorithms for real-time animal detection systems. The latter provides a rationale for the applicability of our proposed solutions, for which we designed a continuous product development lifecycle to determine their feasibility.

摘要

在全球范围内,由于野生动物与车辆碰撞(WVC)导致的人员和动物生命损失以及财产损失的持续趋势仍然是广大利益相关者关注的重要问题。为了减轻其发生和影响,许多方法正在被采用,但效果各异。由于人工智能方法的多功能性和效率不断提高,它们的采用率正在大幅上升。本研究广泛回顾了结合传感器技术和/或机器学习方法来减轻 WVC 的智能系统的文献。我们的综述包括对导致人与野生动物冲突的关键因素的调查,以及对用于减轻 WVC 的主流最先进数据集的讨论。我们的研究将系统综述与文献计量分析相结合。我们发现,大多数动物检测系统(不包括自动驾驶车辆)既不依赖于最先进的数据集,也不依赖于最新的机器学习方法。因此,我们认为使用最新的数据集和机器学习技术将最小化误检并提高模型性能。此外,本工作还涵盖了一系列相关挑战,包括无法检测热点区域和训练数据集的局限性。确定的未来研究方向包括用于实时动物检测系统的算法的设计和开发。后者为我们提出的解决方案的适用性提供了依据,我们为此设计了一个持续的产品开发生命周期来确定其可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c175/9003022/66f0962db276/sensors-22-02478-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验