Suppr超能文献

基于固定步长的车辆锂离子电池寿命预测的实时更新高阶扩展卡尔曼滤波方法

Real-Time Updating High-Order Extended Kalman Filtering Method Based on Fixed-Step Life Prediction for Vehicle Lithium-Ion Batteries.

作者信息

Wang Jincheng, Wen Chenglin

机构信息

School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China.

School of Automation, Guangdong University of Petrochemical Technology, Maoming 525000, China.

出版信息

Sensors (Basel). 2022 Mar 28;22(7):2574. doi: 10.3390/s22072574.

Abstract

Lithium-ion batteries have become an important power source in low-carbon transportation energy, and the safe operation and remaining useful life prediction are of great significance. Aiming at the shortcomings of existing methods, such as low prediction accuracy and a short prediction period, this paper proposes a real-time update high-order extended Kalman filter method based on fixed-step life prediction for vehicle lithium batteries based on the principle of combining models and data. First, the state model describing the parameters in the dynamic energy attenuation model is established, and the energy attenuation model is regarded as the observation model of the system to meet the requirements of establishing the Kalman filter. Secondly, the multi-step prediction equation of the state model is established by iterative recursion. At the same time, the multi-step prediction equation between the existing energy output value and the future output value is established based on the multi-dimensional Taylor network (MTN). The multiplicative noise term introduced in the dynamic modeling process is regarded as the hidden variable of the system to meet the requirements of establishing the multi-step linear predictive Kalman filter. Finally, the effectiveness of the new method is verified by digital simulation examples.

摘要

锂离子电池已成为低碳交通能源中的重要电源,其安全运行及剩余使用寿命预测具有重要意义。针对现有方法存在的预测精度低、预测周期短等缺点,本文基于模型与数据相结合的原理,提出一种基于固定步长寿命预测的车辆锂电池实时更新高阶扩展卡尔曼滤波方法。首先,建立描述动态能量衰减模型中参数的状态模型,并将能量衰减模型视为系统的观测模型,以满足建立卡尔曼滤波器的要求。其次,通过迭代递推建立状态模型的多步预测方程。同时,基于多维泰勒网络(MTN)建立现有能量输出值与未来输出值之间的多步预测方程。将动态建模过程中引入的乘性噪声项视为系统的隐藏变量,以满足建立多步线性预测卡尔曼滤波器的要求。最后,通过数字仿真算例验证了新方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/975b/9002392/68ab24550b60/sensors-22-02574-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验