Beijing Lab of Intelligent Information Technology, School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China.
Laboratoire des Sciences et Technologies de l'Information et de la Communication LabSTIC, Université 8 Mai 1945 Guelma, BP 401, Guelma 24000, Algeria.
Biomed Res Int. 2020 May 11;2020:7695207. doi: 10.1155/2020/7695207. eCollection 2020.
Mammography remains the most prevalent imaging tool for early breast cancer screening. The language used to describe abnormalities in mammographic reports is based on the Breast Imaging Reporting and Data System (BI-RADS). Assigning a correct BI-RADS category to each examined mammogram is a strenuous and challenging task for even experts. This paper proposes a new and effective computer-aided diagnosis (CAD) system to classify mammographic masses into four assessment categories in BI-RADS. The mass regions are first enhanced by means of histogram equalization and then semiautomatically segmented based on the region growing technique. A total of 130 handcrafted BI-RADS features are then extracted from the shape, margin, and density of each mass, together with the mass size and the patient's age, as mentioned in BI-RADS mammography. Then, a modified feature selection method based on the genetic algorithm (GA) is proposed to select the most clinically significant BI-RADS features. Finally, a back-propagation neural network (BPN) is employed for classification, and its accuracy is used as the fitness in GA. A set of 500 mammogram images from the digital database for screening mammography (DDSM) is used for evaluation. Our system achieves classification accuracy, positive predictive value, negative predictive value, and Matthews correlation coefficient of 84.5%, 84.4%, 94.8%, and 79.3%, respectively. To our best knowledge, this is the best current result for BI-RADS classification of breast masses in mammography, which makes the proposed system promising to support radiologists for deciding proper patient management based on the automatically assigned BI-RADS categories.
乳腺摄影仍然是早期乳腺癌筛查最常用的影像学工具。用于描述乳腺摄影报告中异常的语言基于乳腺影像报告和数据系统(BI-RADS)。即使对于专家来说,为每个检查的乳腺摄影分配正确的 BI-RADS 类别也是一项艰巨而具有挑战性的任务。本文提出了一种新的有效的计算机辅助诊断(CAD)系统,用于将乳腺摄影中的肿块分类为 BI-RADS 的四个评估类别。首先通过直方图均衡化增强肿块区域,然后基于区域生长技术半自动分割。然后从每个肿块的形状、边缘和密度中提取总共 130 个手工制作的 BI-RADS 特征,以及肿块大小和患者年龄,如 BI-RADS 乳腺摄影中所述。然后,提出了一种基于遗传算法(GA)的改进特征选择方法,用于选择最具临床意义的 BI-RADS 特征。最后,使用反向传播神经网络(BPN)进行分类,并将其准确性用作 GA 中的适应度。使用数字筛查乳腺摄影数据库(DDSM)中的 500 个乳腺图像集进行评估。我们的系统实现了 84.5%、84.4%、94.8%和 79.3%的分类准确率、阳性预测值、阴性预测值和马修斯相关系数。据我们所知,这是目前乳腺摄影中 BI-RADS 分类的最佳结果,这使得所提出的系统有望支持放射科医生根据自动分配的 BI-RADS 类别为患者提供适当的管理。