Department of Visual Communication Design, Soegijapranata Catholic University, Semarang 50234, Indonesia.
Department of Digital Media Design, Asia University, Taichung 413305, Taiwan.
Sensors (Basel). 2022 Apr 5;22(7):2786. doi: 10.3390/s22072786.
Foot progression angle (FPA) analysis is one of the core methods to detect gait pathologies as basic information to prevent foot injury from excessive in-toeing and out-toeing. Deep learning-based object detection can assist in measuring the FPA through plantar pressure images. This study aims to establish a precision model for determining the FPA. The precision detection of FPA can provide information with in-toeing, out-toeing, and rearfoot kinematics to evaluate the effect of physical therapy programs on knee pain and knee osteoarthritis. We analyzed a total of 1424 plantar images with three different You Only Look Once (YOLO) networks: YOLO v3, v4, and v5x, to obtain a suitable model for FPA detection. YOLOv4 showed higher performance of the profile-box, with average precision in the left foot of 100.00% and the right foot of 99.78%, respectively. Besides, in detecting the foot angle-box, the ground-truth has similar results with YOLOv4 (5.58 ± 0.10° vs. 5.86 ± 0.09°, p = 0.013). In contrast, there was a significant difference in FPA between ground-truth vs. YOLOv3 (5.58 ± 0.10° vs. 6.07 ± 0.06°, p < 0.001), and ground-truth vs. YOLOv5x (5.58 ± 0.10° vs. 6.75 ± 0.06°, p < 0.001). This result implies that deep learning with YOLOv4 can enhance the detection of FPA.
足进角(FPA)分析是检测步态病理的核心方法之一,是预防因过度内旋和外旋导致足部受伤的基本信息。基于深度学习的目标检测可以通过足底压力图像来辅助测量 FPA。本研究旨在建立一种用于确定 FPA 的精密模型。FPA 的精确检测可以提供内旋、外旋和后足运动学的信息,以评估物理治疗方案对膝痛和膝骨关节炎的效果。我们分析了总共 1424 张足底图像,使用了三种不同的 You Only Look Once(YOLO)网络:YOLO v3、v4 和 v5x,以获得适合 FPA 检测的模型。YOLOv4 在轮廓框的性能上表现更高,左脚的平均精度为 100.00%,右脚的平均精度为 99.78%。此外,在检测足部角度框时,YOLOv4 的地面实况结果相似(5.58±0.10°vs.5.86±0.09°,p=0.013)。相比之下,FPA 方面,地面实况与 YOLOv3(5.58±0.10°vs.6.07±0.06°,p<0.001)和地面实况与 YOLOv5x(5.58±0.10°vs.6.75±0.06°,p<0.001)之间存在显著差异。这一结果表明,YOLOv4 的深度学习可以增强 FPA 的检测。