Suppr超能文献

一种基于足底压力图像的足进步角检测深度学习方法。

A Deep Learning Method for Foot Progression Angle Detection in Plantar Pressure Images.

机构信息

Department of Visual Communication Design, Soegijapranata Catholic University, Semarang 50234, Indonesia.

Department of Digital Media Design, Asia University, Taichung 413305, Taiwan.

出版信息

Sensors (Basel). 2022 Apr 5;22(7):2786. doi: 10.3390/s22072786.

Abstract

Foot progression angle (FPA) analysis is one of the core methods to detect gait pathologies as basic information to prevent foot injury from excessive in-toeing and out-toeing. Deep learning-based object detection can assist in measuring the FPA through plantar pressure images. This study aims to establish a precision model for determining the FPA. The precision detection of FPA can provide information with in-toeing, out-toeing, and rearfoot kinematics to evaluate the effect of physical therapy programs on knee pain and knee osteoarthritis. We analyzed a total of 1424 plantar images with three different You Only Look Once (YOLO) networks: YOLO v3, v4, and v5x, to obtain a suitable model for FPA detection. YOLOv4 showed higher performance of the profile-box, with average precision in the left foot of 100.00% and the right foot of 99.78%, respectively. Besides, in detecting the foot angle-box, the ground-truth has similar results with YOLOv4 (5.58 ± 0.10° vs. 5.86 ± 0.09°, p = 0.013). In contrast, there was a significant difference in FPA between ground-truth vs. YOLOv3 (5.58 ± 0.10° vs. 6.07 ± 0.06°, p < 0.001), and ground-truth vs. YOLOv5x (5.58 ± 0.10° vs. 6.75 ± 0.06°, p < 0.001). This result implies that deep learning with YOLOv4 can enhance the detection of FPA.

摘要

足进角(FPA)分析是检测步态病理的核心方法之一,是预防因过度内旋和外旋导致足部受伤的基本信息。基于深度学习的目标检测可以通过足底压力图像来辅助测量 FPA。本研究旨在建立一种用于确定 FPA 的精密模型。FPA 的精确检测可以提供内旋、外旋和后足运动学的信息,以评估物理治疗方案对膝痛和膝骨关节炎的效果。我们分析了总共 1424 张足底图像,使用了三种不同的 You Only Look Once(YOLO)网络:YOLO v3、v4 和 v5x,以获得适合 FPA 检测的模型。YOLOv4 在轮廓框的性能上表现更高,左脚的平均精度为 100.00%,右脚的平均精度为 99.78%。此外,在检测足部角度框时,YOLOv4 的地面实况结果相似(5.58±0.10°vs.5.86±0.09°,p=0.013)。相比之下,FPA 方面,地面实况与 YOLOv3(5.58±0.10°vs.6.07±0.06°,p<0.001)和地面实况与 YOLOv5x(5.58±0.10°vs.6.75±0.06°,p<0.001)之间存在显著差异。这一结果表明,YOLOv4 的深度学习可以增强 FPA 的检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99e6/9003219/6e011ff704df/sensors-22-02786-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验