Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA.
Sensors (Basel). 2022 Apr 6;22(7):2814. doi: 10.3390/s22072814.
Landslides are a global and frequent natural hazard, affecting many communities and infrastructure networks. Technological solutions are needed for long-term, large-scale condition monitoring of infrastructure earthworks or natural slopes. However, current instruments for slope stability monitoring are often costly, require a complex installation process and/or data processing schemes, or have poor resolution. Wireless sensor networks comprising low-power, low-cost sensors have been shown to be a crucial part of landslide early warning systems. Here, we present the development of a novel sensing approach that uses linear arrays of three-axis accelerometers for monitoring changes in sensor inclination, and thus the surrounding soil's deformation. By combining these deformation measurements with depth-resolved temperature measurements, we can link our data to subsurface thermal-hydrological regimes where relevant. In this research, we present a configuration of cascaded I2C sensors that (i) have ultra-low power consumption and (ii) enable an adjustable probe length. From an electromechanical perspective, we developed a novel board-to-board connection method that enables narrow, semi-flexible sensor arrays and a streamlined assembly process. The low-cost connection method relies on a specific FR4 printed circuit board design that allows board-to-board press fitting without using electromechanical components or solder connections. The sensor assembly is placed in a thin, semi-flexible tube (inner diameter 6.35 mm) that is filled with an epoxy compound. The resulting sensor probe is connected to an AA-battery-powered data logger with wireless connectivity. We characterize the system's electromechanical properties and investigate the accuracy of deformation measurements. Our experiments, performed with probes up to 1.8 m long, demonstrate long-term connector stability, as well as probe mechanical flexibility. Furthermore, our accuracy analysis indicates that deformation measurements can be performed with a 0.390 mm resolution and a 95% confidence interval of ±0.73 mm per meter of probe length. This research shows the suitability of low-cost accelerometer arrays for distributed soil stability monitoring. In comparison with emerging low-cost measurements of surface displacement, our approach provides depth-resolved deformation, which can inform about shallow sliding surfaces.
滑坡是一种全球性且频繁发生的自然灾害,影响着许多社区和基础设施网络。需要技术解决方案来对基础设施土方工程或自然边坡进行长期、大规模的状态监测。然而,目前用于边坡稳定性监测的仪器往往成本高昂,需要复杂的安装过程和/或数据处理方案,或者分辨率较差。已经证明,由低功率、低成本传感器组成的无线传感器网络是滑坡预警系统的重要组成部分。在这里,我们提出了一种新的传感方法的发展,该方法使用三轴加速度计的线性阵列来监测传感器倾斜度的变化,从而监测周围土壤的变形。通过将这些变形测量与深度分辨的温度测量相结合,我们可以将我们的数据与相关的地下热-水力学环境联系起来。在这项研究中,我们提出了一种级联 I2C 传感器的配置,(i)具有超低功耗,(ii)能够调整探头长度。从机电角度来看,我们开发了一种新颖的板对板连接方法,该方法允许使用窄的、半柔性的传感器阵列和简化的装配工艺。这种低成本的连接方法依赖于一种特殊的 FR4 印刷电路板设计,允许板对板压接,而无需使用机电组件或焊接连接。传感器组件放置在一个薄的、半柔性的管中(内径 6.35 毫米),管内填充有环氧树脂化合物。由此产生的传感器探头与一个由 AA 电池供电的带有无线连接的数据记录仪相连。我们对系统的机电特性进行了表征,并研究了变形测量的准确性。我们的实验使用长达 1.8 米的探头进行,结果表明长期连接器稳定性和探头机械灵活性。此外,我们的准确性分析表明,变形测量可以以 0.390 毫米的分辨率和每米探头长度 95%置信区间内的±0.73 毫米的精度进行。这项研究表明,低成本加速度计阵列非常适合分布式土壤稳定性监测。与新兴的低成本表面位移测量相比,我们的方法提供了深度分辨的变形,可以了解浅层滑动面的情况。