Suppr超能文献

基于相关传递函数系统的静息态功能磁共振成像阿尔茨海默病分期识别。

Alzheimer disease stages identification based on correlation transfer function system using resting-state functional magnetic resonance imaging.

机构信息

Computers and Systems Department, Electronics Research Institute, Giza, Egypt.

Systems and Biomedical Engineering Department, Cairo University, Giza, Egypt.

出版信息

PLoS One. 2022 Apr 12;17(4):e0264710. doi: 10.1371/journal.pone.0264710. eCollection 2022.

Abstract

Alzheimer's disease (AD) affects the quality of life as it causes; memory loss, difficulty in thinking, learning, and performing familiar tasks. Resting-state functional magnetic resonance imaging (rs-fMRI) has been widely used to investigate and analyze different brain regions for AD identification. This study investigates the effectiveness of using correlated transfer function (CorrTF) as a new biomarker to extract the essential features from rs-fMRI, along with support vector machine (SVM) ordered hierarchically, in order to distinguish between the different AD stages. Additionally, we explored the regions, showing significant changes based on the CorrTF extracted features' strength among different AD stages. First, the process was initialized by applying the preprocessing on rs-fMRI data samples to reduce noise and retain the essential information. Then, the automated anatomical labeling (AAL) atlas was employed to divide the brain into 116 regions, where the intensity time series was calculated, and the CorrTF features were extracted for each region. The proposed framework employed the SVM classifier in two different methodologies, hierarchical and flat multi-classification schemes, to differentiate between the different AD stages for early detection purposes. The ADNI rs-fMRI dataset, employed in this study, consists of 167, 102, 129, and 114 normal, early, late mild cognitive impairment (MCI), and AD subjects, respectively. The proposed schemes achieved an average accuracy of 98.2% and 95.5% for hierarchical and flat multi-classification tasks, respectively, calculated using ten folds cross-validation. Therefore, CorrTF is considered a promising biomarker for AD early-stage identification. Moreover, the significant changes in the strengths of CorrTF connections among the different AD stages can help us identify and explore the affected brain regions and their latent associations during the progression of AD.

摘要

阿尔茨海默病(AD)会导致记忆力减退、思维困难、学习和执行熟悉任务的能力下降等问题,从而影响生活质量。静息态功能磁共振成像(rs-fMRI)已被广泛用于研究和分析不同的脑区,以识别 AD。本研究探讨了使用相关传递函数(CorrTF)作为一种新的生物标志物从 rs-fMRI 中提取基本特征的有效性,以及支持向量机(SVM)有序分层,以区分不同的 AD 阶段。此外,我们还探索了基于 CorrTF 提取特征强度的不同 AD 阶段之间的显著变化的区域。首先,通过对 rs-fMRI 数据样本进行预处理来减少噪声并保留基本信息,初始化该过程。然后,采用自动解剖标记(AAL)图谱将大脑分为 116 个区域,计算每个区域的强度时间序列,并提取 CorrTF 特征。所提出的框架在两种不同的方法中使用 SVM 分类器,即分层和平面多分类方案,以区分不同的 AD 阶段,用于早期检测。本研究使用的 ADNI rs-fMRI 数据集分别包含 167、102、129 和 114 名正常、早期、晚期轻度认知障碍(MCI)和 AD 患者。使用十折交叉验证计算,分层和平面多分类任务的平均准确率分别为 98.2%和 95.5%。因此,CorrTF 被认为是 AD 早期识别的有前途的生物标志物。此外,不同 AD 阶段之间 CorrTF 连接强度的显著变化可以帮助我们识别和探索 AD 进展过程中受影响的脑区及其潜在关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daa7/9004771/d0adbb95b9b7/pone.0264710.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验