Suppr超能文献

基于功能磁共振成像的阿尔茨海默病检测:通过功能连接分析的系统综述。

fMRI-based Alzheimer's disease detection via functional connectivity analysis: a systematic review.

作者信息

Alarjani Maitha, Almarri Badar

机构信息

Department of Computer Science, King Faisal University, Alhsa, Saudi Arabia.

出版信息

PeerJ Comput Sci. 2024 Oct 16;10:e2302. doi: 10.7717/peerj-cs.2302. eCollection 2024.

Abstract

Alzheimer's disease is a common brain disorder affecting many people worldwide. It is the primary cause of dementia and memory loss. The early diagnosis of Alzheimer's disease is essential to provide timely care to AD patients and prevent the development of symptoms of this disease. Various non-invasive techniques can be utilized to diagnose Alzheimer's in its early stages. These techniques include functional magnetic resonance imaging, electroencephalography, positron emission tomography, and diffusion tensor imaging. They are mainly used to explore functional and structural connectivity of human brains. Functional connectivity is essential for understanding the co-activation of certain brain regions co-activation. This systematic review scrutinizes various works of Alzheimer's disease detection by analyzing the learning from functional connectivity of fMRI datasets that were published between 2018 and 2024. This work investigates the whole learning pipeline including data analysis, standard preprocessing phases of fMRI, feature computation, extraction and selection, and the various machine learning and deep learning algorithms that are used to predict the occurrence of Alzheimer's disease. Ultimately, the paper analyzed results on AD and highlighted future research directions in medical imaging. There is a need for an efficient and accurate way to detect AD to overcome the problems faced by patients in the early stages.

摘要

阿尔茨海默病是一种常见的脑部疾病,影响着全球许多人。它是痴呆和记忆力丧失的主要原因。阿尔茨海默病的早期诊断对于为患者提供及时护理并预防该疾病症状的发展至关重要。可以利用各种非侵入性技术在早期阶段诊断阿尔茨海默病。这些技术包括功能磁共振成像、脑电图、正电子发射断层扫描和扩散张量成像。它们主要用于探索人脑的功能和结构连通性。功能连通性对于理解某些脑区的共同激活至关重要。本系统综述通过分析2018年至2024年间发表的功能磁共振成像数据集功能连通性的研究成果,仔细审查了各种阿尔茨海默病检测的研究工作。这项研究调查了整个研究流程,包括数据分析、功能磁共振成像的标准预处理阶段、特征计算、提取和选择,以及用于预测阿尔茨海默病发生的各种机器学习和深度学习算法。最终,本文分析了阿尔茨海默病的研究结果,并突出了医学成像领域未来的研究方向。需要一种高效且准确的方法来检测阿尔茨海默病,以克服患者在早期阶段面临的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b154/11622848/556bb46d64d1/peerj-cs-10-2302-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验