Suppr超能文献

利用机器学习实现呼吸样本中生物标志物的快速自动检测。

Fast and automated biomarker detection in breath samples with machine learning.

机构信息

Computer Science Department, School of Science, Loughborough University, Loughborough, United Kingdom.

Centre for Analytical Science, School of Science, Loughborough University, Loughborough, United Kingdom.

出版信息

PLoS One. 2022 Apr 12;17(4):e0265399. doi: 10.1371/journal.pone.0265399. eCollection 2022.

Abstract

Volatile organic compounds (VOCs) in human breath can reveal a large spectrum of health conditions and can be used for fast, accurate and non-invasive diagnostics. Gas chromatography-mass spectrometry (GC-MS) is used to measure VOCs, but its application is limited by expert-driven data analysis that is time-consuming, subjective and may introduce errors. We propose a machine learning-based system to perform GC-MS data analysis that exploits deep learning pattern recognition ability to learn and automatically detect VOCs directly from raw data, thus bypassing expert-led processing. We evaluate this new approach on clinical samples and with four types of convolutional neural networks (CNNs): VGG16, VGG-like, densely connected and residual CNNs. The proposed machine learning methods showed to outperform the expert-led analysis by detecting a significantly higher number of VOCs in just a fraction of time while maintaining high specificity. These results suggest that the proposed novel approach can help the large-scale deployment of breath-based diagnosis by reducing time and cost, and increasing accuracy and consistency.

摘要

人体呼吸中的挥发性有机化合物 (VOCs) 可以揭示出大范围的健康状况,可用于快速、准确和非侵入性诊断。气相色谱-质谱联用 (GC-MS) 用于测量 VOCs,但由于专家驱动的数据分析耗时、主观且可能引入误差,其应用受到限制。我们提出了一种基于机器学习的系统来进行 GC-MS 数据分析,该系统利用深度学习模式识别能力,直接从原始数据中学习和自动检测 VOCs,从而绕过专家主导的处理。我们在临床样本上评估了这种新方法,并使用了四种卷积神经网络 (CNNs):VGG16、VGG 类、密集连接和残差 CNNs。研究结果表明,与专家主导的分析相比,所提出的机器学习方法通过在极短的时间内检测到数量显著更多的 VOCs,同时保持高特异性,从而表现出更好的性能。这些结果表明,通过减少时间和成本,提高准确性和一致性,所提出的新方法可以帮助大规模部署基于呼吸的诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a4c/9004778/22ad07053733/pone.0265399.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验