Zheng Peikun, Yang Wudi, Wu Wei, Isayev Olexandr, Dral Pavlo O
State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
J Phys Chem Lett. 2022 Apr 21;13(15):3479-3491. doi: 10.1021/acs.jpclett.2c00734. Epub 2022 Apr 13.
Enthalpies of formation and reaction are important thermodynamic properties that have a crucial impact on the outcome of chemical transformations. Here we implement the calculation of enthalpies of formation with a general-purpose ANI-1ccx neural network atomistic potential. We demonstrate on a wide range of benchmark sets that both ANI-1ccx and our other general-purpose data-driven method AIQM1 approach the coveted chemical accuracy of 1 kcal/mol with the speed of semiempirical quantum mechanical methods (AIQM1) or faster (ANI-1ccx). It is remarkably achieved without specifically training the machine learning parts of ANI-1ccx or AIQM1 on formation enthalpies. Importantly, we show that these data-driven methods provide statistical means for uncertainty quantification of their predictions, which we use to detect and eliminate outliers and revise reference experimental data. Uncertainty quantification may also help in the systematic improvement of such data-driven methods.
生成焓和反应焓是重要的热力学性质,对化学转化的结果有着至关重要的影响。在此,我们利用通用的ANI-1ccx神经网络原子势实现了生成焓的计算。我们在广泛的基准数据集上证明,ANI-1ccx和我们的另一种通用数据驱动方法AIQM1,都能以半经验量子力学方法(AIQM1)的速度或更快(ANI-1ccx)达到令人垂涎的1千卡/摩尔的化学精度。在没有针对生成焓对ANI-1ccx或AIQM1的机器学习部分进行专门训练的情况下,这一成果显著达成。重要的是,我们表明这些数据驱动方法为其预测的不确定性量化提供了统计手段,我们利用这一手段来检测和消除异常值,并修正参考实验数据。不确定性量化也可能有助于此类数据驱动方法的系统改进。