Suppr超能文献

具有会话间非平稳性降低能力的 BCI 的黎曼流形选择。

Riemannian Channel Selection for BCI With Between-Session Non-Stationarity Reduction Capabilities.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2022;30:1158-1171. doi: 10.1109/TNSRE.2022.3167262. Epub 2022 May 6.

Abstract

OBJECTIVE

Between-session non-stationarity is a major challenge of current Brain-Computer Interfaces (BCIs) that affects system performance. In this paper, we investigate the use of channel selection for reducing between-session non-stationarity with Riemannian BCI classifiers. We use the Riemannian geometry framework of covariance matrices due to its robustness and promising performances. Current Riemannian channel selection methods do not consider between-session non-stationarity and are usually tested on a single session. Here, we propose a new channel selection approach that specifically considers non-stationarity effects and is assessed on multi-session BCI data sets.

METHODS

We remove the least significant channels using a sequential floating backward selection search strategy. Our contributions include: 1) quantifying the non-stationarity effects on brain activity in multi-class problems by different criteria in a Riemannian framework and 2) a method to predict whether BCI performance can improve using channel selection.

RESULTS

We evaluate the proposed approaches on three multi-session and multi-class mental tasks (MT)-based BCI datasets. They could lead to significant improvements in performance as compared to using all channels for datasets affected by between-session non-stationarity and to significant superiority to the state-of-the-art Riemannian channel selection methods over all datasets, notably when selecting small channel set sizes.

CONCLUSION

Reducing non-stationarity by channel selection could significantly improve Riemannian BCI classification accuracy.

SIGNIFICANCE

Our proposed channel selection approach contributes to make Riemannian BCI classifiers more robust to between-session non-stationarities.

摘要

目的

会话间非平稳性是当前脑机接口(BCI)的主要挑战,会影响系统性能。本文研究了使用通道选择来减少基于黎曼几何的 BCI 分类器的会话间非平稳性。我们使用协方差矩阵的黎曼几何框架,因为它具有鲁棒性和有前途的性能。当前的黎曼通道选择方法没有考虑会话间非平稳性,并且通常在单个会话上进行测试。在这里,我们提出了一种新的通道选择方法,专门考虑非平稳性效应,并在多会话 BCI 数据集上进行评估。

方法

我们使用顺序浮动后向选择搜索策略来删除最不重要的通道。我们的贡献包括:1)在黎曼框架中通过不同标准量化多类问题中大脑活动的非平稳性效应,2)一种方法来预测使用通道选择是否可以提高 BCI 性能。

结果

我们在三个基于多会话和多类任务(MT)的 BCI 数据集上评估了所提出的方法。与使用所有通道相比,它们可以在受会话间非平稳性影响的数据集上显著提高性能,并且与所有数据集的最新黎曼通道选择方法相比具有显著优势,尤其是在选择小通道集大小时。

结论

通过通道选择减少非平稳性可以显著提高黎曼 BCI 分类准确性。

意义

我们提出的通道选择方法有助于使黎曼 BCI 分类器对会话间非平稳性更具鲁棒性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验