Suppr超能文献

基于黎曼距离的通道选择和特征提取,结合判别时频带和黎曼切空间,用于 MI-BCIs。

Riemannian distance based channel selection and feature extraction combining discriminative time-frequency bands and Riemannian tangent space for MI-BCIs.

机构信息

Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China.

Shenzhen Research Institute of East China University of Technology, Shen Zhen 518063, People's Republic of China.

出版信息

J Neural Eng. 2022 Sep 30;19(5). doi: 10.1088/1741-2552/ac9338.

Abstract

Motor imagery-based brain computer interfaces (MI-BCIs) have been widely researched because they do not demand external stimuli and have a high degree of maneuverability. In most scenarios, superabundant selected channels, fixed time windows, and frequency bands would certainly affect the performance of MI-BCIs due to the neurophysiological diversities among different individuals. In this study, we attempt to effectively use the Riemannian geometry of spatial covariance matrix to extract more robust features and thus enhance the decoding efficiency.First, we utilize a Riemannian distance-based electroencephalography (EEG) channel selection method, which preliminarily reduces the information redundancy in the first stage. Second, we extract discriminative Riemannian tangent space features of EEG signals of selected channels from the most discriminant time-frequency bands to further enhance decoding accuracy for MI-BCIs. Finally, we train a support vector machine model with a linear kernel to classify our extracted discriminative Riemannian features, and evaluate our proposed method using publicly available BCI Competition IV dataset Ⅰ (DS1) and Competition Ⅲ dataset Ⅲa (DS2).The experimental results show that the average classification accuracy with the selected 16-channel EEG signals of our method is 90.0% and 89.4% in DS1 and DS2 respectively. The average improvements are 20.0% and 21.2% on DS1, 9.4% and 7.2% on DS2 for 8 and 16 selected channels, respectively.These results show that our proposed method is a promising candidate for the performance improvement of MI-BCIs.

摘要

基于运动想象的脑机接口(MI-BCIs)因其不需要外部刺激且具有高度的机动性而得到了广泛的研究。在大多数情况下,由于不同个体的神经生理差异,过多选择的通道、固定的时间窗口和频段肯定会影响 MI-BCIs 的性能。在本研究中,我们试图有效地利用空间协方差矩阵的黎曼几何来提取更稳健的特征,从而提高解码效率。首先,我们使用基于黎曼距离的脑电图(EEG)通道选择方法,在第一阶段初步减少信息冗余。其次,我们从最具判别力的时频带中提取所选通道 EEG 信号的判别黎曼切空间特征,进一步提高 MI-BCIs 的解码精度。最后,我们使用线性核支持向量机模型对提取的判别黎曼特征进行分类,并使用公开可用的 BCI 竞赛 IV 数据集 I(DS1)和竞赛 III 数据集 IIIa(DS2)来评估我们的方法。实验结果表明,我们的方法在 DS1 和 DS2 中使用选择的 16 通道 EEG 信号的平均分类准确率分别为 90.0%和 89.4%。对于 8 个和 16 个选择的通道,在 DS1 上的平均改进分别为 20.0%和 21.2%,在 DS2 上的平均改进分别为 9.4%和 7.2%。这些结果表明,我们提出的方法是提高 MI-BCIs 性能的有前途的候选方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验