Suppr超能文献

Function of the ventrolateral medulla in the control of the circulation.

作者信息

Ciriello J, Caverson M M, Polosa C

出版信息

Brain Res. 1986 Dec;396(4):359-91. doi: 10.1016/0165-0173(86)90005-6.

Abstract

The CNS control of the cardiovascular system involves the coordination of a series of complex neural mechanisms which integrate afferent information from a variety of peripheral receptors and produce control signals to effector organs for appropriate physiological responses. Although it is generally thought that these control signals are generated by a network of neural circuits that are widely distributed in the CNS, over the last two decades a considerable body of experimental evidence has accumulated suggesting that several of these circuits involve neurons found on or near the ventral surface of the medulla oblongata. Neurons in the VLM have been shown to be involved in the maintenance of vasomotor tone, in baroreceptor and chemoreceptor (central and peripheral) reflex mechanisms, in mediating the CIR and somatosympathetic reflexes and in the control of the secretion of vasopressin. These physiological functions of VLM neurons have been supported by neuroanatomical and electrophysiological studies demonstrating direct connections with a number of central structures previously implicated in the control of the circulation, including the IML, the site of origin of sympathetic preganglionic axons, and the SON and PVH, the site of origin of neurohypophyseal projecting axons containing AVP. Considerable suggestive evidence has also been obtained regarding the chemical messengers involved in transmitting information from VLM neurons to other central structures. There have been developments suggesting a role for monoamines and neuropeptides in mediating the neural and humoral control of SAP by neurons in the VLM. This review presents a synthesis of the literature suggesting a main role for VLM neurons in the control of the circulation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验