Suppr超能文献

基于内容的血液涂片淋巴瘤诊断图像检索系统:深度学习与传统学习方法的结合。

A content-based image retrieval system for the diagnosis of lymphoma using blood micrographs: An incorporation of deep learning with a traditional learning approach.

机构信息

Department of Electronics and Communication Engineering, National Institute of Technology, Calicut, India.

Department of Electronics and Communication Engineering, National Institute of Technology, Calicut, India.

出版信息

Comput Biol Med. 2022 Jun;145:105463. doi: 10.1016/j.compbiomed.2022.105463. Epub 2022 Apr 7.

Abstract

Lymphomas, or cancers of the lymphatic system, account for around half of all blood cancers diagnosed each year. Lymphoma is a condition that is difficult to diagnose, and accurate diagnosis is critical for effective treatment. Manual microscopic analysis of blood cells requires the involvement of medical experts, whose precision is dependent on their abilities, and it takes time. This paper describes a content-based image retrieval system that uses deep learning-based feature extraction and a traditional learning method for feature reduction to retrieve similar images from a database to aid early/initial lymphoma diagnosis. The proposed algorithm employs a pre-trained network called ResNet-101 to extract image features required to distinguish four types of cells: lymphoma cells, blasts, lymphocytes, and other cells. The issue of class imbalance is resolved by over-sampling the training data followed by data augmentation. Deep learning features are extracted using the activations of the feature layer in the pre-trained net, then dimensionality reduction techniques are used to select discriminant features for the image retrieval system. Euclidean distance is used as the similarity measure to retrieve similar images from the database. The experimentation uses a microscopic blood image dataset with 1673 leukocytes of the categories blasts, lymphoma, lymphocytes, and other cells. The proposed algorithm achieves 98.74% precision in lymphoma cell classification and 99.22% precision @10 for lymphoma cell image retrieval. Experimental findings confirm our approach's practicability and effectiveness. Extended studies endorse the idea of using the prescribed system in actual medical applications, helping doctors diagnose lymphoma, dramatically reducing human resource requirements.

摘要

淋巴瘤,即淋巴系统的癌症,约占每年诊断出的所有血液癌症的一半。淋巴瘤是一种难以诊断的疾病,准确的诊断对于有效的治疗至关重要。手动对血细胞进行微观分析需要医学专家的参与,其准确性取决于他们的能力,并且需要时间。本文介绍了一种基于内容的图像检索系统,该系统使用基于深度学习的特征提取和传统的学习方法进行特征降维,以便从数据库中检索相似的图像,以辅助早期/初始淋巴瘤的诊断。所提出的算法使用了一种名为 ResNet-101 的预训练网络来提取区分四种类型的细胞(淋巴瘤细胞、blasts、淋巴细胞和其他细胞)所需的图像特征。通过对训练数据进行过采样和数据增强来解决类别不平衡问题。使用预训练网络的特征层的激活来提取深度学习特征,然后使用降维技术选择图像检索系统的判别特征。使用欧几里得距离作为相似性度量来从数据库中检索相似的图像。实验使用了一个包含 1673 个类别为 blasts、lymphoma、lymphocytes 和其他细胞的白细胞的显微镜血图像数据集。所提出的算法在淋巴瘤细胞分类方面达到了 98.74%的精度,在淋巴瘤细胞图像检索方面达到了 99.22%的精度@10。实验结果证实了我们方法的实用性和有效性。进一步的研究支持在实际医疗应用中使用规定的系统的想法,帮助医生诊断淋巴瘤,大大减少对人力资源的需求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验