School of Computer Science and Engineering, North Minzu University, Yinchuan 750021, China.
Biomed Res Int. 2020 Dec 26;2020:6687733. doi: 10.1155/2020/6687733. eCollection 2020.
Content-based medical image retrieval (CBMIR) systems attempt to search medical image database to narrow the semantic gap in medical image analysis. The efficacy of high-level medical information representation using features is a major challenge in CBMIR systems. Features play a vital role in the accuracy and speed of the search process. In this paper, we propose a deep convolutional neural network- (CNN-) based framework to learn concise feature vector for medical image retrieval. The medical images are decomposed into five components using empirical mode decomposition (EMD). The deep CNN is trained in a supervised way with multicomponent input, and the learned features are used to retrieve medical images. The IRMA dataset, containing 11,000 X-ray images, 116 classes, is used to validate the proposed method. We achieve a total IRMA error of 43.21 and a mean average precision of 0.86 for retrieval task and IRMA error of 68.48 and F1 measure of 0.66 on classification task, which is the best result compared with existing literature for this dataset.
基于内容的医学图像检索(CBMIR)系统试图搜索医学图像数据库,以缩小医学图像分析中的语义差距。使用特征表示高级医学信息的功效是 CBMIR 系统中的主要挑战。特征在搜索过程的准确性和速度方面起着至关重要的作用。在本文中,我们提出了一种基于深度卷积神经网络(CNN)的框架,用于学习用于医学图像检索的简洁特征向量。使用经验模态分解(EMD)将医学图像分解为五个分量。使用多分量输入以监督方式训练深度 CNN,并使用学习到的特征来检索医学图像。使用包含 11000 张 X 射线图像和 116 个类别的 IRMA 数据集来验证所提出的方法。我们在检索任务中实现了总 IRMA 错误 43.21 和平均准确率 0.86,在分类任务中实现了 IRMA 错误 68.48 和 F1 度量值 0.66,与该数据集的现有文献相比,这是最佳结果。