Atanasova Petia, Dou Maofeng, Kousik Shravan R, Bill Joachim, Fyta Maria
Institute for Materials Science, University of Stuttgart Heisenbergstr. 3 70569 Stuttgart Germany.
Institute for Computational Physics, University of Stuttgart Allmandring 3 70569 Stuttgart Germany
RSC Adv. 2021 Jan 29;11(10):5466-5478. doi: 10.1039/d0ra05127f. eCollection 2021 Jan 28.
A comprehensive understanding of the interactions between organic molecules and a metal oxide surface is essential for an efficient surface modification and the formation of organic-inorganic hybrids with technological applications ranging from heterogeneous catalysis and biomedical templates up to functional nanoporous matrices. In this work, first-principles calculations supported by experiments are used to provide the microstructural characteristics of (101̄0) surfaces of zinc oxide single crystals modified by azide terminated hydrocarbons, which graft on the oxide through a thiol group. On the computational side, we evaluate the specific interactions between the surface and the molecules with the chemical formula N(CH) SH, with = 1, 3, 6, 9. We demonstrate that the molecules chemisorb on the bridge site of ZnO(101̄0). Upon adsorption, the N(CH) SH molecules break the neutral (Zn -O ) dimers on ZnO(101̄0) resulting in a structural distortion of the ZnO(101̄0) substrate. The energy decomposition analysis revealed that such structure distortion favors the adsorption of the molecules on the surface leading to a strong correlation between the surface distortion energy and the interaction energy of the molecule. An azide-terminated thiol with three methylene groups in the hydrocarbon chain N(CH)SH was synthesized, and the assembly of this linker on ZnO surfaces was confirmed through atomic force microscopy. The bonding to the inorganic surface was examined X-ray photoelectron spectroscopy (XPS). Clear signatures of the organic components on the oxide substrates were observed underlying the successful realization of thiol-grafting on the metal oxide. Temperature-dependent and angle-resolved XPS were applied to examine the thermal stability and to determine the thickness of the grafted SAMs, respectively. We discuss the high potential of our hybrid materials in providing further functionalities towards heterocatalysis and medical applications.
全面了解有机分子与金属氧化物表面之间的相互作用,对于实现高效的表面改性以及形成有机 - 无机杂化材料至关重要,这些杂化材料在从多相催化、生物医学模板到功能性纳米多孔基质等技术应用中都有广泛应用。在这项工作中,我们利用实验支持的第一性原理计算,来提供由叠氮基封端的烃类修饰的氧化锌单晶(101̄0)表面的微观结构特征,这些烃类通过硫醇基团接枝到氧化物上。在计算方面,我们评估了化学式为N(CH) SH(其中 = 1、3、6、9)的表面与分子之间的特定相互作用。我们证明这些分子化学吸附在ZnO(101̄0)的桥位上。吸附后,N(CH) SH分子打破了ZnO(101̄0)上的中性(Zn -O )二聚体,导致ZnO(101̄0)衬底的结构畸变。能量分解分析表明,这种结构畸变有利于分子在表面的吸附,导致表面畸变能与分子相互作用能之间存在很强的相关性。我们合成了烃链中含有三个亚甲基的叠氮基封端硫醇N(CH)SH,并通过原子力显微镜证实了该连接体在ZnO表面的组装。通过X射线光电子能谱(XPS)研究了与无机表面的键合。在金属氧化物上成功实现硫醇接枝的基础上,观察到了氧化物衬底上有机成分的清晰特征。分别应用温度依赖的XPS和角分辨XPS来研究热稳定性和确定接枝自组装单分子层(SAMs)的厚度。我们讨论了我们的杂化材料在提供更多异相催化和医学应用功能方面的巨大潜力。