Shen Hongyuan, Liu Binbin, Nie Zanxiang, Li Zixuan, Jin Shunyu, Huang Yuan, Zhou Hang
College of Information Science and Engineering, Northeastern University Shenyang PR China
School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen 518055 PR China.
RSC Adv. 2021 Apr 19;11(24):14408-14414. doi: 10.1039/d1ra00346a. eCollection 2021 Apr 15.
The high specific capacity, low cost and environmental friendliness make manganese dioxide materials promising cathode materials for zinc-ion batteries (ZIBs). In order to understand the difference between the electrochemical behavior of manganese dioxide materials with different valence states, , Mn(iii) and Mn(iv), we investigated and compared the electrochemical properties of pure MnO and MnO as ZIB cathodes a combined experimental and computational approach. The MnO electrode showed a higher discharging capacity (270.4 mA h g at 0.1 A g) and a superior rate performance (125.7 mA h g at 3 A g) than the MnO electrode (188.2 mA h g at 0.1 A g and 87 mA h g at 3 A g, respectively). The superior performance of the MnO electrode was ascribed to its higher specific surface area, higher electronic conductivity and lower diffusion barrier of Zn compared to the MnO electrode. This study provides a detailed picture of the diversity of manganese dioxide electrodes as ZIB cathodes.
高比容量、低成本和环境友好性使二氧化锰材料成为有前景的锌离子电池(ZIBs)正极材料。为了了解不同价态(即Mn(III)和Mn(IV))的二氧化锰材料的电化学行为差异,我们采用实验与计算相结合的方法,研究并比较了纯MnO和MnO作为ZIBs正极的电化学性能。MnO电极在0.1 A g时的放电容量(270.4 mA h g)和倍率性能(3 A g时为125.7 mA h g)均优于MnO电极(0.1 A g时分别为188.2 mA h g和3 A g时为87 mA h g)。MnO电极的优异性能归因于其比MnO电极具有更高的比表面积、更高的电子导电性和更低的Zn扩散势垒。本研究详细描绘了二氧化锰电极作为ZIBs正极的多样性。