Key Laboratory of Microelectronics Device & Integrated Technology, Institute of Microelectronics of Chinese Academy of Sciences, Beijing, 100029, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
Adv Mater. 2022 Jun;34(24):e2200481. doi: 10.1002/adma.202200481. Epub 2022 May 13.
Multimode-fused sensing in the somatosensory system helps people obtain comprehensive object properties and make accurate judgments. However, building such multisensory systems with conventional metal-oxide-semiconductor technology presents serious device integration and circuit complexity challenges. Here, a multimode-fused spiking neuron (MFSN) with a compact structure to achieve human-like multisensory perception is reported. The MFSN heterogeneously integrates a pressure sensor to process pressure and a NbO -based memristor to sense temperature. Using this MFSN, multisensory analog information can be fused into one spike train, showing excellent data compression and conversion capabilities. Moreover, both pressure and temperature information are distinguished from fused spikes by decoupling the output frequencies and amplitudes, supporting multimodal tactile perception. Then, a 3 × 3 MFSN array is fabricated, and the fused frequency patterns are fed into a spiking neural network for enhanced tactile pattern recognition. Finally, a larger MFSN array is simulated for classifying objects with different shapes, temperatures, and weights, validating the feasibility of the MFSNs for practical applications. The proof-of-concept MFSNs enable the building of multimodal sensory systems and contribute to the development of highly intelligent robotics.
多模态融合感知在体感系统中帮助人们获得全面的物体属性并做出准确的判断。然而,使用传统的金属氧化物半导体技术构建这样的多模态系统面临着严重的设备集成和电路复杂性挑战。在这里,报道了一种具有紧凑结构的多模态融合尖峰神经元(MFSN),以实现类似人类的多模态感知。MFSN 异构集成了一个压力传感器来处理压力和一个基于 NbO 的忆阻器来感知温度。使用这种 MFSN,可以将多模态模拟信息融合到一个尖峰序列中,表现出优异的数据压缩和转换能力。此外,通过解耦输出频率和幅度,可以区分压力和温度信息,支持多模态触觉感知。然后,制造了一个 3×3 的 MFSN 阵列,并将融合的频率模式输入到一个尖峰神经网络中,以增强触觉模式识别。最后,模拟了一个更大的 MFSN 阵列,用于分类具有不同形状、温度和重量的物体,验证了 MFSN 用于实际应用的可行性。该概念验证 MFSN 能够构建多模态感测系统,并有助于开发高度智能化的机器人。