基于忆阻器的脉冲神经形态系统实现受脑启发的感知与计算
Memristor-Based Spiking Neuromorphic Systems Toward Brain-Inspired Perception and Computing.
作者信息
Wang Xiangjing, Zhu Yixin, Zhou Zili, Chen Xin, Jia Xiaojun
机构信息
School of Physics and Electronic Engineering, Shanxi Key Laboratory of Wireless Communication and Detection, Shanxi University, Taiyuan 030006, China.
Yongjiang Laboratory, Ningbo 315201, China.
出版信息
Nanomaterials (Basel). 2025 Jul 21;15(14):1130. doi: 10.3390/nano15141130.
Threshold-switching memristors (TSMs) are emerging as key enablers for hardware spiking neural networks, offering intrinsic spiking dynamics, sub-pJ energy consumption, and nanoscale footprints ideal for brain-inspired computing at the edge. This review provides a comprehensive examination of how TSMs emulate diverse spiking behaviors-including oscillatory, leaky integrate-and-fire (LIF), Hodgkin-Huxley (H-H), and stochastic dynamics-and how these features enable compact, energy-efficient neuromorphic systems. We analyze the physical switching mechanisms of redox and Mott-type TSMs, discuss their voltage-dependent dynamics, and assess their suitability for spike generation. We review memristor-based neuron circuits regarding architectures, materials, and key performance metrics. At the system level, we summarize bio-inspired neuromorphic platforms integrating TSM neurons with visual, tactile, thermal, and olfactory sensors, achieving real-time edge computation with high accuracy and low power. Finally, we critically examine key challenges-such as stochastic switching origins, device variability, and endurance limits-and propose future directions toward reconfigurable, robust, and scalable memristive neuromorphic architectures.
阈值开关忆阻器(TSM)正成为硬件脉冲神经网络的关键推动因素,具有内在的脉冲动力学、亚皮焦耳的能耗以及纳米级的尺寸,非常适合边缘端的脑启发式计算。本综述全面探讨了TSM如何模拟多种脉冲行为,包括振荡、泄漏积分发放(LIF)、霍奇金-赫胥黎(H-H)和随机动力学,以及这些特性如何实现紧凑、节能的神经形态系统。我们分析了氧化还原和莫特型TSM的物理开关机制,讨论了它们的电压相关动力学,并评估了它们对脉冲产生的适用性。我们回顾了基于忆阻器的神经元电路的架构、材料和关键性能指标。在系统层面,我们总结了将TSM神经元与视觉、触觉、热和嗅觉传感器集成的生物启发式神经形态平台,实现了高精度、低功耗的实时边缘计算。最后,我们批判性地审视了关键挑战,如随机开关起源、器件变异性和耐久性限制,并提出了朝着可重构、稳健和可扩展的忆阻神经形态架构发展的未来方向。
相似文献
Nanomaterials (Basel). 2025-7-21
Research (Wash D C). 2025-7-4
Nanotechnology. 2024-4-30
本文引用的文献
Nature. 2025-4
Nanomicro Lett. 2025-4-14
Adv Sci (Weinh). 2025-1