Suppr超能文献

胎儿功能磁共振成像数据的运动校正和容积重建。

Motion correction and volumetric reconstruction for fetal functional magnetic resonance imaging data.

机构信息

Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.

School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom.

出版信息

Neuroimage. 2022 Jul 15;255:119213. doi: 10.1016/j.neuroimage.2022.119213. Epub 2022 Apr 14.

Abstract

Motion correction is an essential preprocessing step in functional Magnetic Resonance Imaging (fMRI) of the fetal brain with the aim to remove artifacts caused by fetal movement and maternal breathing and consequently to suppress erroneous signal correlations. Current motion correction approaches for fetal fMRI choose a single 3D volume from a specific acquisition timepoint with least motion artefacts as reference volume, and perform interpolation for the reconstruction of the motion corrected time series. The results can suffer, if no low-motion frame is available, and if reconstruction does not exploit any assumptions about the continuity of the fMRI signal. Here, we propose a novel framework, which estimates a high-resolution reference volume by using outlier-robust motion correction, and by utilizing Huber L2 regularization for intra-stack volumetric reconstruction of the motion-corrected fetal brain fMRI. We performed an extensive parameter study to investigate the effectiveness of motion estimation and present in this work benchmark metrics to quantify the effect of motion correction and regularised volumetric reconstruction approaches on functional connectivity computations. We demonstrate the proposed framework's ability to improve functional connectivity estimates, reproducibility and signal interpretability, which is clinically highly desirable for the establishment of prognostic noninvasive imaging biomarkers. The motion correction and volumetric reconstruction framework is made available as an open-source package of NiftyMIC.

摘要

运动校正(Motion correction)是胎儿脑功能磁共振成像(fMRI)的一个基本预处理步骤,旨在消除由胎儿运动和母体呼吸引起的伪影,并因此抑制错误的信号相关性。当前的胎儿 fMRI 运动校正方法选择特定采集时间点中具有最少运动伪影的单个 3D 体积作为参考体积,并执行插值以重建运动校正的时间序列。如果没有低运动帧可用,并且重建没有利用 fMRI 信号连续性的任何假设,则结果可能会受到影响。在这里,我们提出了一个新的框架,该框架通过使用抗离群值的运动校正和 Huber L2 正则化来估计高分辨率参考体积,用于对运动校正的胎儿脑 fMRI 进行堆栈内体积重建。我们进行了广泛的参数研究,以调查运动估计的有效性,并在本文中提出了基准指标来量化运动校正和正则化体积重建方法对功能连接计算的影响。我们证明了所提出的框架能够提高功能连接估计、可重复性和信号可解释性,这对于建立预后性无创成像生物标志物在临床上是非常需要的。运动校正和体积重建框架作为 NiftyMIC 的开源软件包提供。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验